Mostrar el registro sencillo del ítem

dc.contributor.authorChaves Bedoya, Giovanni
dc.contributor.authorPeña Rodriguez, Gabriel
dc.contributor.authorPadilla Sierra, Hilda Angelica
dc.date.accessioned2021-11-14T21:05:21Z
dc.date.available2021-11-14T21:05:21Z
dc.date.issued2021-10-18
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/977
dc.description.abstractThe electrochemical technique for obtaining silver nanoparticles has advantages over other methods. For the synthesis, a colloidal silver generator (Colloidal Silver Generator® model 1001) was used, where two electrodes coupled to high purity silver rods (99.99%) were used, with a potential difference of 24 V. Nanoparticle concentration was measured by total dissolved solids, using the SI-Analytic HandyLab 680 FK multiparameter in 200 mL of Milli-Q deionized water, reporting 18 ppm at 1 hour at room temperature. The determination of the resonance wavelength of the surface plasmons was carried out by finding the maximum absorbance by UV-Visible spectrophotometry with λ = 423 nm. The morphology and size of the nanoparticles was determined by Transmission Electron Microscopy, observing spherical morphology and sizes smaller than 50 nm. The chemical composition was determined by X-ray energy dispersed spectroscopy, finding a weight concentration of 93.22% of silver. The results show an optimal synthesis of colloidal silver, with characteristics that will allow the inhibition of microorganisms of interest.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherJournal of Physics: Conference Seriesspa
dc.relation.ispartofJournal of Physics: Conference Series
dc.rightsContent from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltdeng
dc.sourcehttps://iopscience.iop.org/article/10.1088/1742-6596/2046/1/012064/metaspa
dc.titleSilver colloidal nanoparticles by electrochemistry: temporal evaluation and surface plasmon resonanceeng
dc.typeArtículo de revistaspa
dcterms.referencesNasretdinova G, Fazleeva R, Mukhitova R, Nizameev I, Kadirov M, Ziganshina A and Yanilkin V 2015 Electrochemical synthesis of silver nanoparticles in solution Electrochemistry Communications 50 69spa
dcterms.referencesLee S H and Jun B H 2019 Silver nanoparticles: synthesis and application for nanomedicine International Journal of Molecular Sciences 20 865spa
dcterms.referencesSingaravelan R and Bangaru-Sudarsan A 2015 Electrochemical synthesis, characterisation and phytogenic properties of silver nanoparticles Applied Nanoscience 5 983spa
dcterms.referencesLong D, Wu G and Chen S 2007 Preparation of oligochitosan stabilized silver nanoparticles by gamma irradiation Radiation Physics and Chemistry 76 1126spa
dcterms.referencesNavaladian S, Viswanathan B and Viswanath R P 2007 Thermal decomposition as route for silver nanoparticles Nanoscale Research Letters 2 44spa
dcterms.referencesKhaydarov R A, Khaydarov R R, Gapurova O, Estrin Y and Scheper T 2009 Electrochemical method for the synthesis of silver nanoparticles Journal of Nanoparticle Research 11 1193spa
dcterms.referencesHaider M and Mahdi M 2015 Synthesis of silver nanoparticles by electrochemical method Engineering and Technology Journal 33 1361spa
dcterms.referencesRadwan I, Gitipour A, Potter P, Dionysiou D and Al-Abed S 2019 Dissolution of silver nanoparticles in colloidal consumer products: effects of particle size and capping agent Journal of Nanoparticle Research 21 155spa
dcterms.referencesCárdenas-Flechas L, Barba-Ortega J and Joya M 2020 Películas de óxido de cobre y hierro depositadas en nanotubos de titanio Revista UIS Ingenierías 19 171spa
dcterms.referencesShahverdi A R, Fakhimi A, Shahverdi H R and Minaian S 2007 Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli Nanomedicine: Nanotechnology, Biology and Medicine 3 168spa
dcterms.referencesLiu P and Chen G 2014 Porous Materials Processing and Applications (Waltham: Butterworth-Heinemann)spa
dcterms.referencesCampa V M 2007 Análisis de Imágenes de Microscopía con ImageJ (Scotts Valley: Create-Space Publishing)spa
dcterms.referencesAmendola V, Bakr O and Stellacci F 2010 Study of the surface plasmon resonance of silver nanoparticles by the discrete dipole approximation method: Effect of shape, size, structure, and assembly Plasmonics 5 85spa
dc.identifier.doi10.1088/1742-6596/2046/1/012064
dc.relation.citationeditionVol.2046 No.1.(2021)spa
dc.relation.citationendpage12spa
dc.relation.citationissue1 (2021)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume2046spa
dc.relation.citesPadilla-Sierra, H. A., Peña-Rodríguez, G., & Chaves-Bedoya, G. (2021, October). Silver colloidal nanoparticles by electrochemistry: temporal evaluation and surface plasmon resonance. In Journal of Physics: Conference Series (Vol. 2046, No. 1, p. 012064). IOP Publishing.
dc.relation.ispartofjournalJournal of Physics: Conference Seriesspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem