dc.contributor.author | Chaves Bedoya, Giovanni | |
dc.contributor.author | Peña Rodriguez, Gabriel | |
dc.contributor.author | Padilla Sierra, Hilda Angelica | |
dc.date.accessioned | 2021-11-14T21:05:21Z | |
dc.date.available | 2021-11-14T21:05:21Z | |
dc.date.issued | 2021-10-18 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/977 | |
dc.description.abstract | The electrochemical technique for obtaining silver nanoparticles has advantages over other methods. For the synthesis, a colloidal silver generator (Colloidal Silver Generator® model 1001) was used, where two electrodes coupled to high purity silver rods (99.99%) were used, with a potential difference of 24 V. Nanoparticle concentration was measured by total dissolved solids, using the SI-Analytic HandyLab 680 FK multiparameter in 200 mL of Milli-Q deionized water, reporting 18 ppm at 1 hour at room temperature. The determination of the resonance wavelength of the surface plasmons was carried out by finding the maximum absorbance by UV-Visible spectrophotometry with λ = 423 nm. The morphology and size of the nanoparticles was determined by Transmission Electron Microscopy, observing spherical morphology and sizes smaller than 50 nm. The chemical composition was determined by X-ray energy dispersed spectroscopy, finding a weight concentration of 93.22% of silver. The results show an optimal synthesis of colloidal silver, with characteristics that will allow the inhibition of microorganisms of interest. | eng |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Journal of Physics: Conference Series | spa |
dc.relation.ispartof | Journal of Physics: Conference Series | |
dc.rights | Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd | eng |
dc.source | https://iopscience.iop.org/article/10.1088/1742-6596/2046/1/012064/meta | spa |
dc.title | Silver colloidal nanoparticles by electrochemistry: temporal evaluation and surface plasmon resonance | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Nasretdinova G, Fazleeva R, Mukhitova R, Nizameev I, Kadirov M, Ziganshina A and Yanilkin V 2015 Electrochemical synthesis of silver nanoparticles in solution Electrochemistry Communications 50 69 | spa |
dcterms.references | Lee S H and Jun B H 2019 Silver nanoparticles: synthesis and application for nanomedicine International Journal of Molecular Sciences 20 865 | spa |
dcterms.references | Singaravelan R and Bangaru-Sudarsan A 2015 Electrochemical synthesis, characterisation and phytogenic properties of silver nanoparticles Applied Nanoscience 5 983 | spa |
dcterms.references | Long D, Wu G and Chen S 2007 Preparation of oligochitosan stabilized silver nanoparticles by gamma irradiation Radiation Physics and Chemistry 76 1126 | spa |
dcterms.references | Navaladian S, Viswanathan B and Viswanath R P 2007 Thermal decomposition as route for silver nanoparticles Nanoscale Research Letters 2 44 | spa |
dcterms.references | Khaydarov R A, Khaydarov R R, Gapurova O, Estrin Y and Scheper T 2009 Electrochemical method for the synthesis of silver nanoparticles Journal of Nanoparticle Research 11 1193 | spa |
dcterms.references | Haider M and Mahdi M 2015 Synthesis of silver nanoparticles by electrochemical method Engineering and Technology Journal 33 1361 | spa |
dcterms.references | Radwan I, Gitipour A, Potter P, Dionysiou D and Al-Abed S 2019 Dissolution of silver nanoparticles in colloidal consumer products: effects of particle size and capping agent Journal of Nanoparticle Research 21 155 | spa |
dcterms.references | Cárdenas-Flechas L, Barba-Ortega J and Joya M 2020 Películas de óxido de cobre y hierro depositadas en nanotubos de titanio Revista UIS Ingenierías 19 171 | spa |
dcterms.references | Shahverdi A R, Fakhimi A, Shahverdi H R and Minaian S 2007 Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli Nanomedicine: Nanotechnology, Biology and Medicine 3 168 | spa |
dcterms.references | Liu P and Chen G 2014 Porous Materials Processing and Applications (Waltham: Butterworth-Heinemann) | spa |
dcterms.references | Campa V M 2007 Análisis de Imágenes de Microscopía con ImageJ (Scotts Valley: Create-Space Publishing) | spa |
dcterms.references | Amendola V, Bakr O and Stellacci F 2010 Study of the surface plasmon resonance of silver nanoparticles by the discrete dipole approximation method: Effect of shape, size, structure, and assembly Plasmonics 5 85 | spa |
dc.identifier.doi | 10.1088/1742-6596/2046/1/012064 | |
dc.relation.citationedition | Vol.2046 No.1.(2021) | spa |
dc.relation.citationendpage | 12 | spa |
dc.relation.citationissue | 1 (2021) | spa |
dc.relation.citationstartpage | 1 | spa |
dc.relation.citationvolume | 2046 | spa |
dc.relation.cites | Padilla-Sierra, H. A., Peña-Rodríguez, G., & Chaves-Bedoya, G. (2021, October). Silver colloidal nanoparticles by electrochemistry: temporal evaluation and surface plasmon resonance. In Journal of Physics: Conference Series (Vol. 2046, No. 1, p. 012064). IOP Publishing. | |
dc.relation.ispartofjournal | Journal of Physics: Conference Series | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |