Mostrar el registro sencillo del ítem

dc.contributor.authorPerez-Roa, Michael Edgardo
dc.contributor.authorOrtiz Alvarez, Maria Daniela
dc.contributor.authorGarcía-Martinez, Janet
dc.contributor.authorBarajas Solano, andres F
dc.contributor.authorBarajas-Solano, Crisostomo
dc.date.accessioned2025-02-27T14:41:38Z
dc.date.available2025-02-27T14:41:38Z
dc.date.issued2024-08-11
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/9147
dc.description.abstractIn this research, a mining effluent was used to produce microalgal and cyanobacterial bio-mass to obtain red (carotenoids) and blue pigments (phycocyanin). Two strains were isolated from a hydrothermal source in Norte de Santander and grown in mining wastewater mixed with 50% BG-11 medium for the Osci_UFPS01 cyanobacterium and 50% with Bold Basal me-dium for the Chlo_UFPS01 microalgae. A carbon, nitrogen, and phosphorus experiment de-sign was developed, and subsequent response surface analysis (RSM) was used to determine the optimal operating conditions for the formation of the products of interest. A notable de-crease in pigment production was observed compared to that in the controls without mining wastewater. Overall, 45% of phycocyanin (C PC) per unit dry weight (DW) and 1,129% (w/w) of carotenoids were obtained in the cultures with a mining wastewater mixture in the final optimization processeseng
dc.description.abstractEn esta investigación se utilizó un efluente minero para producir biomasa microalgal y cianobacte-rial para la obtención de pigmentos rojos (carotenoides) y azules (ficocianina). Se aislaron dos ce-pas de una fuente hidrotermal de Norte de Santander y se cultivaron en aguas residuales mineras mezcladas al 50% con medio BG-11 para la cianobacteria Osci_UFPS01 y al 50% con medio Bold Basal para la microalga Chlo_UFPS01. Se desarrolló un diseño experimental de carbono, nitrógeno y fósforo, y posteriormente se utilizó el análisis de superficie de respuesta (RSM) para determinar las condiciones de operación óptimas para la formación de los productos de interés. Se observó una notable disminución de la producción de pigmentos en comparación con la de los controles sin aguas residuales mineras. En conjunto, se obtuvo un 45% de ficocianina (C PC) por unidad de peso seco (PS) y un 1.129% (p/p) de carotenoides en los cultivos con mezcla de aguas residuales mineras en los procesos finales de optimizaciónspa
dc.format.extent21 Páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherIngeniería y Competitividadspa
dc.rightsThis work is licensed under a Creative Commons Attribu-tion-NonCommercial-ShareA-like4.0 International Licenseeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourcehttps://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/13752/17356spa
dc.titleUse of mining effluents for the production of algal-based colorantseng
dc.typeArtículo de revistaspa
dcterms.referencesSkousen J, Sexstone A, Ziemkiewicz P. Acid Mine Drainage Control and Treatment. Reclam Drastically Disturb Lands. 2000;spa
dcterms.referencesAkcil A, Koldas S. Acid Mine Drainage (AMD): causes, treatment and case studies. J Clean Prod [Internet]. 2006;14(12):1139–45. Available from: https://www.sciencedirect.com/science/article/pii/S0959652605000600spa
dcterms.referencesChen T, Zheng W, Yang F, Bai Y, Wong Y-S. Mixotrophic culture of high selenium-enriched Spirulina platensis on acetate and the enhanced production of photosynthetic pigments. Enzyme Microb Technol. 2006;39:103–7spa
dcterms.referencesStrosnider WHJ, Llanos López FS, Nairn RW. Acid mine drainage at Cerro Rico de Potosí II: severe degradation of the Upper Rio Pilcomayo watershed. Environ Earth Sci [Internet]. 2011;64(4):911–23. Available from: https://doi.org/10.1007/s12665-010-0899-2spa
dcterms.referencesAlva M, Luna-Pabello V, Ledesma MT, Cruz-Gómez M. Carbon, nitrogen, and phosphorus removal, and lipid production by three saline microalgae grown in synthetic wastewater irradiated with different photon uxes. Algal Res. 2018;34:97–103.spa
dcterms.referencesFerro L, Gojkovic Z, Muñoz R, Funk C. Growth performance and nutrient removal of a Chlorella vulgaris-Rhizobium sp. coculture during mixotrophic feed-batch cultivation in synthetic wastewater. Algal Res [Internet]. 2019;44:101690. Available from: https://www.sciencedirect.com/science/article/pii/S2211926419305107spa
dcterms.referencesMakut BB, Das D, Goswami G. Production of microbial biomass feedstock via cocultivation of microalgae-bacteria consortium coupled with effective wastewater treatment: A sustainable approach. Algal Res [Internet]. 2019;37:228–39. Available from: https://www.sciencedirect.com/science/article/pii/S2211926418303217spa
dcterms.referencesLi X, Yang C, Zeng G, Wu S, Lin Y, Zhou Q, et al. Nutrient removal from swine wastewater with growing microalgae at various zinc concentrations. Algal Res [Internet]. 2020;46:101804. Available from: https://www.sciencedirect.com/science/article/pii/S2211926419308367spa
dcterms.referencesArrojo MÁ, Regaldo L, Calvo Orquín J, Figueroa FL, Abdala Díaz RT. Potential of the microalgae Chlorella fusca (Trebouxiophyceae, Chlorophyta) for biomass production and urban wastewater phycoremediation. AMB Express [Internet]. 2022;12(1). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128263237&doi=10.1186%2Fs13568-022-01384-z&partnerID=40&md5=30231ddb688bb4baa9e01799ecc7a621spa
dcterms.referencesEl‑Naggar NE ‑A., Hamouda RA, Abou-El-Souod GW. Statistical optimization for simultaneous removal of methyl red and production of fatty acid methyl esters using fresh alga Scenedesmus obliquus. Sci Rep [Internet]. 2022;12(1). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85129259034&doi=10.1038%2Fs41598-022-11069-z&partnerID=40&md5=e8d768a4f9bc8f9f78fe46f7c3855626spa
dcterms.referencesSanchez-Galvis EM, Cardenas-Gutierrez IY, Contreras-Ropero JE, García-Martínez JB, Barajas-Solano AF, Zuorro A. An Innovative Low-Cost Equipment for Electro-Concentration of Microalgal Biomass. Vol. 10, Applied Sciences. 2020.spa
dcterms.referencesZuorro A. Enhanced Lycopene Extraction from Tomato Peels by Optimized Mixed-Polarity Solvent Mixtures. Vol. 25, Molecules. 2020spa
dcterms.referencesZuorro A, Lavecchia R. Polyphenols and Energy Recovery from Spent Coffee Grounds. Chem Eng Trans. 2011 Jan 1;25:285–90.spa
dcterms.referencesZuorro A, Iannone A, Natali S, Lavecchia R. Green Synthesis of Silver Nanoparticles Using Bilberry and Red Currant Waste Extracts. Vol. 7, Processes. 2019spa
dcterms.referencesMontanaro D, Lavecchia R, Petrucci E, Zuorro A. UV-assisted electrochemical degradation of coumarin on boron-doped diamond electrodes. Chem Eng J [Internet]. 2017;323:512–9. Available from: https://www.sciencedirect.com/science/article/pii/S1385894717307258spa
dcterms.referencesObuekwe IS, Vaz MGM V, Genuário DB, Castro NV, Almeida AVM, Veloso RW, et al. Arsenic-contaminated sediment from mining areas as source of morphological and phylogenetic distinct cyanobacterial lineages. Algal Res [Internet]. 2019;42:101589. Available from: https://www.sciencedirect.com/science/article/pii/S2211926419300827spa
dcterms.referencesSamiotis G, Stamatakis K, Amanatidou E. Dimensioning of Synechococcus elongatus PCC 7492 cultivation photobioreactor for valorization of wastewater resources. Chem Eng J [Internet]. 2022;435. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123870300&doi=10.1016%2Fj.cej.2022.134895&partnerID=40&md5=3b2eb065ba41020525a4afd13ad117fcspa
dcterms.referencesNur MMA. Coproduction of polyhydroxybutyrate and C-phycocyanin from Arthrospira platensis growing on palm oil mill effluent by employing UV-C irradiation. J Appl Phycol [Internet]. 2022; Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128173986&doi=10.1007%2Fs10811-022-02738-7&partnerID=40&md5=573d81314f645c37e3457b81bcb2b032spa
dcterms.referencesWood JL, Takemoto JY, Sims RC. Rotating Algae Biofilm Reactor for Management and Valorization of Produced Wastewater. Front Energy Res [Internet]. 2022;10. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85124281462&doi=10.3389%2Ffenrg.2022.774760&partnerID=40&md5=80fd4e5bc24a1cfa3a6901dfdefb2e51spa
dcterms.referencesIngeniería y Competitividad, 2024 vol 26(3) e-20313752/ sept-dic19/21doi: 10.25100/iyc.v26i1.13752Use of mining effluents for the production of algal-based colorants15. Montanaro D, Lavecchia R, Petrucci E, Zuorro A. UV-assisted electrochemical degradation of coumarin on boron-doped diamond electrodes. Chem Eng J [Internet]. 2017;323:512–9. Available from: https://www.sciencedirect.com/science/article/pii/S138589471730725816. Obuekwe IS, Vaz MGM V, Genuário DB, Castro NV, Almeida AVM, Veloso RW, et al. Arsenic-contaminated sediment from mining areas as source of morphological and phylogenetic distinct cyanobacterial lineages. Algal Res [Internet]. 2019;42:101589. Available from: https://www.sciencedirect.com/science/article/pii/S221192641930082717. Samiotis G, Stamatakis K, Amanatidou E. Dimensioning of Synechococcus elongatus PCC 7492 cultivation photobioreactor for valorization of wastewater resources. Chem Eng J [Internet]. 2022;435. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123870300&doi=10.1016%2Fj.cej.2022.134895&partnerID=40&md5=3b2eb065ba41020525a4afd13ad117fc18. Nur MMA. Coproduction of polyhydroxybutyrate and C-phycocyanin from Arthrospira platensis growing on palm oil mill effluent by employing UV-C irradiation. J Appl Phycol [Internet]. 2022; Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128173986&doi=10.1007%2Fs10811-022-02738-7&partnerID=40&md5=573d81314f645c37e3457b81bcb2b03219. Wood JL, Takemoto JY, Sims RC. Rotating Algae Biofilm Reactor for Management and Valorization of Produced Wastewater. Front Energy Res [Internet]. 2022;10. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85124281462&doi=10.3389%2Ffenrg.2022.774760&partnerID=40&md5=80fd4e5bc24a1cfa3a6901dfdefb2e5120. Torres DD, Cáceres Sepúlveda S, Roa AL, Suárez Gelvez JH, Urbina Suárez NA. Utilización de microalgas de la división Chlorophyta en el tratamiento biológico de drenajes ácidos de minas de carbón. Rev Colomb Biotecnol. 2017;19(2):95–104spa
dcterms.referencesQiu S, Shen Y, Zhang L, Ma B, Amadu AA, Ge S. Antioxidant assessment of wastewater-cultivated Chlorella sorokiniana in Drosophila melanogaster. Algal Res [Internet]. 2020;46:101795. Available from: https://www.sciencedirect.com/science/article/pii/S2211926419311336spa
dcterms.referencesXue Y, Zhao P, Quan C, Zhao Z, Gao W, Li J, et al. Cyanobacteria-derived peptide antibiotics discovered since 2000. Peptides. 2018;107:17–24spa
dcterms.referencesSekar S, Chandramohan M. Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J Appl Phycol [Internet]. 2008;20(2):113–36. Available from: https://doi.org/10.1007/s10811-007-9188-1spa
dcterms.referencesThangam R, Suresh V, Asenath Princy W, Rajkumar M, Senthilkumar N, Gunasekaran P, et al. C-Phycocyanin from Oscillatoria tenuis exhibited an antioxidant and in vitro antiproliferative activity through induction of apoptosis and G0/G1 cell cycle arrest. Food Chem. 2013;140(1–2):262–72spa
dcterms.referencesLee NK, Oh H-M, Kim H-S, Ahn C-Y. Higher production of C-phycocyanin by nitrogen-free (diazotrophic) cultivation of Nostoc sp. NK and simplified extraction by dark-cold shock. Bioresour Technol [Internet]. 2017;227:164–70. Available from: https://www.sciencedirect.com/science/article/pii/S0960852416317230spa
dcterms.referencesRivera P, Parra O, González M, Dellarossa V, Orellana M. Manual taxonómico del fitoplancton de aguas continentales con especial referencia al fitoplancton de Chile. IV. Bacillariophyceae. 1982.spa
dcterms.referencesBaker AL, Baker JC, Lee Murby A, Wyatt L, Ryan Beagen W, Stockwell Elliott C. Phycokey -- an image based key to Algae (PS Protista), Cyanobacteria, and other aquatic objects. University of New Hampshire Center for Freshwater Biology. 2012.spa
dcterms.referencesBennett A, Bogorad L. Complementary chromatic adaptation in a filamentous blue‒green alga. J Cell Biol. 1973;58(2):419–35spa
dcterms.referencesPatil G, Chethana S, Sridevi AS, Raghavarao KSMS. Method to obtain C-phycocyanin of high purity. J Chromatogr A [Internet]. 2006;1127(1):76–81. Available from: https://www.sciencedirect.com/science/article/pii/S0021967306011009spa
dcterms.referencesPřibyl P, Cepák V, Kaštánek P, Zachleder V. Elevated production of carotenoids by a new isolate of Scenedesmus sp. Algal Res. 2015;11:2spa
dcterms.referencesPrates D da F, Radmann EM, Duarte JH, Morais MG de, Costa JAV. Spirulina cultivated under different light emitting diodes: Enhanced cell growth and phycocyanin production. Bioresour Technol [Internet]. 2018;256:38–43. Available from: https://www.sciencedirect.com/science/article/pii/S0960852418301445spa
dcterms.referencesDejsungkranont M, Chen H-H, Sirisansaneeyakul S. Enhancement of antioxidant activity of C-phycocyanin of Spirulina powder treated with supercritical fluid carbon dioxide. Agric Nat Resour [Internet]. 2017;51(5):347–54. Available from: https://www.sciencedirect.com/science/article/pii/S2452316X1730635Xspa
dcterms.referencesLi P, Harding SE, Liu Z. Cyanobacterial Exopolysaccharides: Their Nature and Potential Biotechnological Applications. Biotechnol Genet Eng Rev [Internet]. 2001;18(1):375–404. Available from: https://doi.org/10.1080/02648725.2001.10648020spa
dcterms.referencesSoni B, Kalavadia B, Trivedi U, Madamwar D. Extraction, purification and characterization of phycocyanin from Oscillatoria quadripunctulata—Isolated from the rocky shores of Bet-Dwarka, Gujarat, India. Process Biochem [Internet]. 2006;41(9):2017–23. Available from: https://www.sciencedirect.com/science/article/pii/S1359511306001735spa
dcterms.referencesAduvire O. Drenaje ácido de mina, generación y tratamiento. [Internet]. Madrid; 2006. Available from: http://info.igme.es/SidPDF/113000/258/113258_0000001.pdfspa
dcterms.referencesBarajas Solano AF, Godoy Ruiz CA, Monroy Davila JD, Barajas Ferreira C, Kafarov V. Mejoramiento del secuestro de CO2 por Chlorella vulgaris UTEX 1803 en fotobiorreactores a escala laboratorio . Vol. 25, Revista ION . scieloco ; 2012. p. 39–47spa
dcterms.referencesEstévez-Landazábal L-L, Barajas-Solano A-F, Barajas-Ferreira C, Kafarov V. IMPROVEMENT OF LIPID PRODUCTIVITY ON Chlorella vulgaris USING WASTE GLYCEROL AND SODIUM ACETATE . Vol. 5, CT&F - Ciencia, Tecnología y Futuro . scieloco ; 2013. p. 113–26spa
dcterms.referencesGonzález-Delgado ÁD, Barajas-Solano AF, Ardila-Álvarez AM. Producción de biomasa y proteínas de Chlorella vulgaris Beyerinck (Chlorellales: Chlorellaceae) a través del diseño de medios de cultivo selectivos. Cienc y Tecnol Agropecu. 2017 Aug;18(3 SE-Acuicultura y pesca):451–61spa
dcterms.referencesRodrigues DB, Flores ÉMM, Barin JS, Mercadante AZ, Jacob-Lopes E, Zepka LQ. Production of carotenoids from microalgae cultivated using agroindustrial wastes. Food Res Int [Internet]. 2014;65:144–8. Available from: https://www.sciencedirect.com/science/article/pii/S0963996914004426spa
dcterms.referencesGe S, Qiu S, Tremblay D, Viner K, Champagne P, Jessop PG. Centrate wastewater treatment with Chlorella vulgaris: Simultaneous enhancement of nutrient removal, biomass and lipid production. Chem Eng J [Internet]. 2018;342:310–20. Available from: https://www.sciencedirect.com/science/article/pii/S1385894718302596spa
dcterms.referencesChen H, Wang J, Zheng Y, Zhan J, He C, Wang Q. Algal biofuel production coupled bioremediation of biomass power plant wastes based on Chlorella sp. C2 cultivation. Appl Energy [Internet]. 2018;211:296–305. Available from: https://www.sciencedirect.com/science/article/pii/S0306261917316434spa
dcterms.referencesDamergi E, Schwitzguébel J-P, Refardt D, Sharma S, Holliger C, Ludwig C. Extraction of carotenoids from Chlorella vulgaris using green solvents and syngas production from residual biomass. Algal Res [Internet]. 2017;25:488–95. Available from: https://www.sciencedirect.com/science/article/pii/S2211926416303903spa
dcterms.referencesZuorro A, Malavasi V, Cao G, Lavecchia R. Use of cell wall degrading enzymes to improve the recovery of lipids from Chlorella sorokiniana. Chem Eng J [Internet]. 2019;377:120325. Available from: https://www.sciencedirect.com/science/article/pii/S1385894718322575spa
dcterms.referencesZuorro A, Lavecchia R, Maffei G, Marra F, Miglietta S, Petrangeli A, et al. Enhanced Lipid Extraction from Unbroken Microalgal Cells Using Enzymes. Chem Eng Trans [Internet]. 2015 May 20;43:211-216 SE-Research Articles. Available from: https://www.cetjournal.it/index.php/cet/article/view/CET1543036spa
dcterms.referencesBarajas-Solano A, Garcia Martinez J, Ayala E, reyes oscar, Zuorro A, Barajas C. Evaluation of a Two-Phase Extraction System of Carbohydrates and Proteins from Chlorella vulgaris Utex 1803. Chem Eng Trans. 2016 Apr 10;49:355spa
dcterms.referencesZuorro A, García-Martínez JB, Barajas-Solano AF. The Application of Catalytic Processes on the Production of Algae-Based Biofuels: A Review. Vol. 11, Catalysts. 2021.spa
dcterms.referencesJohnson EM, Kumar K, Das D. Physicochemical parameters optimization, and purification of phycobiliproteins from the isolated Nostoc sp. Bioresour Technol [Internet]. 2014;166:541–7. Available from: https://www.sciencedirect.com/science/article/pii/S0960852414008050spa
dc.identifier.doi10.25100/iyc.v26i3.13752
dc.publisher.placeCali- Colombiaspa
dc.relation.citationeditionVol.26 No.3 (2024)spa
dc.relation.citationendpage21spa
dc.relation.citationissue3 (2024)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume26spa
dc.relation.citesPérez-Roa, M.E., Ortiz-Álvarez, M.D., García-Martínez, J.B., Barajas-Solano, A.F., Bara-jas-Solano, C. Use of mining effluents for the production of algal-based colorants. Inge-niería y Competitividad, 2024, 26(3)e-20313752
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

This work is licensed under a Creative Commons Attribu-tion-NonCommercial-ShareA-like4.0 International License
Excepto si se señala otra cosa, la licencia del ítem se describe como This work is licensed under a Creative Commons Attribu-tion-NonCommercial-ShareA-like4.0 International License