Mostrar el registro sencillo del ítem
Estimation of missing data in a geophysical series of precipitation
dc.contributor.author | Vergel Ortega, Mawency | |
dc.contributor.author | GALLARDO PÉREZ, HENRY DE JESÚS | |
dc.contributor.author | Rojas Suárez, Jhan Piero | |
dc.date.accessioned | 2021-11-07T14:15:41Z | |
dc.date.available | 2021-11-07T14:15:41Z | |
dc.date.issued | 2021-06-09 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/721 | |
dc.description.abstract | The analysis of dynamic systems is a topic of great interest in the basic sciences since it allows direct inference of the behavior of different systems. The study of physical phenomena provides large databases that, if recorded at regular time intervals, constitute time series. However, time series of geophysical data in many cases present missing data and their estimation requires the application of valid methods that allow estimating reliable information to complete the series since some analysis methods require these series to be complete. Two methods are used in this article to estimate the missing values of the precipitation series in the city of San José de Cúcuta, Colombia, the first one consists of considering the univariate data series and applying an adjustment of the sequential conditional expectation method of forecasting with restrictions, the second one refers to analyze the data series of a nearby station and through multivariate methods establish the cointegration between the series, and then use this as a basis for estimating the missing data in the analysis series. The two methods are recursive, a first estimation of the model is made ignoring the missing data, an initial estimation of the missing data is made, then a new estimation of the model parameters and a new estimation of the missing data is made, the algorithm continues running with the new values replacing the values estimated in the previous phase until the difference of the estimated values between successive iterations is less than a value fixed beforehand. Finally, a comparison is made between the estimates made by the two methods. | eng |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Journal of Physics: Conference Series | spa |
dc.relation.ispartof | Journal of Physics: Conference Series | |
dc.rights | Content from this work may be used under the terms of theCreative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd | eng |
dc.source | https://iopscience.iop.org/article/10.1088/1742-6596/1938/1/012024/meta | spa |
dc.title | Estimation of missing data in a geophysical series of precipitation | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Herrera-Oliva C, Campos-Gaytán J and Carrillo-González F 2017 Estimación de datos faltantes de precipitación por el método de regresión lineal: Caso de estudio Cuenca Guadalupe, Baja California, México Investigación y Ciencia 25 33 | spa |
dcterms.references | Gallardo H, Vergel M and Rojas J 2020 Análisis dinámico de series multivariadas Mundo FESC 10 34 | spa |
dcterms.references | Gallardo H, Rojas J and Gallardo O 2019 Modelación de Series Temporales en el Sector Productivo del Norte de Santander (Bogotá: ECOE) | spa |
dcterms.references | Gallardo H, Vergel M and Rojas J 2020 Dynamic and sequential update for time series forecasting Journal of Physics: Conference Series 1587 1 | spa |
dcterms.references | Mauricio J 2007 Introducción al Análisis de Series Temporales (Madrid: Universidad Complutense de Madrid) | spa |
dcterms.references | Abril J 2011 Análisis de la evolución de las técnicas de series tiempo. Un enfoque unificado Estadística 63 5 | spa |
dcterms.references | Box G and Jenkins G 1969 Time Series Analysis, Forecasting and Control (San Francisco: Holden–Day) | spa |
dcterms.references | Gallardo H, Gallardo O and Rojas J 2019 Estimation of models and cycles in time series applying fractal geometry Journal of Physics: Conference Series 1329 1 | spa |
dcterms.references | Guerrero V 1989 Optimal conditional ARIMA forecasts Journal of Forecasting 8 215 | spa |
dcterms.references | Medina-Rivera R, Montoya-Restrepo E and Jaramillo-Robledo A 2008 Estimación estadística de valores faltantes en series históricas de lluvia Cenicafé 59 260 | spa |
dcterms.references | Box G and Tiao G 1975 Intervention analysis with applications to economic and environmental problems Journal of the American Statistical Association 70 335 | spa |
dcterms.references | Chow G and Lin A 1976 Best linear unbiased estimation of missing observation in a economic time series Journal of the American Statistical Association 71 719 | spa |
dcterms.references | Anderson B and Moore B 1979 Optimal Filtering (Englewood: Prentice-Hall) | spa |
dcterms.references | Jones R 1980 Maximum likelihood fitting of ARMA Models to time series with missing observations Technometrics 22 389 | spa |
dcterms.references | Peña D and Maravall A 1990 Interpolation, outliers and the inverse autocorrelations Communications in Statistics 20 3175 | spa |
dcterms.references | Velásquez M and Martínez J 2009 Estimación de observaciones faltantes en series de tiempo usando métodos multivariados con restricciones Comunicaciones en Estadística 2 1 | spa |
dcterms.references | Guerrero V and Peña D 2003 Combining multiple time series predictors: a useful inferential procedure Journal of Statistical Planning and Inference 116 249 | spa |
dcterms.references | Alfaro E and Javier F 2009 Descripción de dos métodos de rellenado de datos ausentes en series de tiempo meteorológicas Revista de Matemáticas: Teoría y Aplicaciones 16 5 | spa |
dcterms.references | WeatherOnline Ltd 2020 WeatherOnline Ltd. - Meteorological Services (London: WeatherOnline Ltd) Consulted on: www.woespana.es | spa |
dc.identifier.doi | 10.1088/1742-6596/1938/1/012024 | |
dc.relation.citationedition | Vol.1938 No.1.(2021) | spa |
dc.relation.citationendpage | 6 | spa |
dc.relation.citationissue | 1 (2021) | spa |
dc.relation.citationstartpage | 1 | spa |
dc.relation.citationvolume | 1938 | spa |
dc.relation.cites | Pérez, H. G., Ortega, M. V., & Suárez, J. R. (2021, May). Estimation of missing data in a geophysical series of precipitation. In Journal of Physics: Conference Series (Vol. 1938, No. 1, p. 012024). IOP Publishing. | |
dc.relation.ispartofjournal | Journal of Physics: Conference Series | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |