Mostrar el registro sencillo del ítem
A Simulation Analysis of an Influenza Vaccine Production Plant in Areas of High Humanitarian Flow. A Preliminary Study for the Region of Norte de Santander (Colombia)
dc.contributor.author | Contreras Ropero, Jefferson Eduardo | |
dc.contributor.author | Ruiz Roa, Silvia Liliana | |
dc.contributor.author | García-Martinez, Janet | |
dc.contributor.author | Urbina-Suarez, Nestor Andres | |
dc.contributor.author | López Barrera, German Luciano | |
dc.contributor.author | Barajas Solano, andres F | |
dc.contributor.author | ZUORRO, Antonio | |
dc.date.accessioned | 2024-04-16T14:08:18Z | |
dc.date.available | 2024-04-16T14:08:18Z | |
dc.date.issued | 2021-12-24 | |
dc.identifier.uri | https://repositorio.ufps.edu.co/handle/ufps/6933 | |
dc.description.abstract | The production of vaccines of biological origin presents a tremendous challenge for researchers. In this context, animal cell cultures are an excellent alternative for the isolation and production of biologicals against several viruses, since they have an affinity with viruses and a great capacity for their replicability. Different variables have been studied to know the system’s ideal parameters, allowing it to obtain profitable and competitive products. Consequently, this work focuses its efforts on evaluating an alternative for producing an anti-influenza biological from MDCK cells using SuperPro Designer v8.0 software. The process uses the DMEN culture medium supplemented with nutrients as raw material for cell development; the MDCK cells were obtained from a potential scale-up with a final working volume of 500 L, four days of residence time, inoculum volume of 10%, and continuous working mode with up to a total of 7400 h/Yr of work. The scheme has the necessary equipment for the vaccine’s production, infection, and manufacture with yields of up to 416,698 units/h. In addition, it was estimated to be economically viable to produce recombinant vaccines with competitive prices of up to 0.31 USD/unit. | eng |
dc.format.extent | 9 Páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Applied Sciences (Switzerland) | spa |
dc.relation.ispartof | Appl. Sci. 2022, 12, 183. https://doi.org/ 10.3390/app12010183 | |
dc.rights | under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). | eng |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | spa |
dc.source | https://www.mdpi.com/2076-3417/12/1/183 | spa |
dc.title | A Simulation Analysis of an Influenza Vaccine Production Plant in Areas of High Humanitarian Flow. A Preliminary Study for the Region of Norte de Santander (Colombia) | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Reed, C.; Chaves, S.S.; Kirley, P.D.; Emerson, R.; Aragon, D.; Hancock, E.B.; Butler, L.; Baumbach, J.; Hollick, G.; Bennett, N.M.; et al. Estimating Influenza Disease Burden from Population-Based Surveillance Data in the United States. PLoS ONE 2015, 10, e0118369. [CrossRef] [PubMed] | spa |
dcterms.references | Instituto Nacional de Salud. Acute Respiratory Infection Event Report, Colombia, 2019. Available online: https://www.ins.gov.co/ buscador-eventos/Informesdeevento/INFECCIÓN%20RESPIRATORIA%20AGUDA_2019.pdf (accessed on 11 September 2021). | spa |
dcterms.references | International Organization for Migration. DTM Survey—Vocation of Venezuelan Population to Stay in Colombia, Colombia, 2020. Available online: https://colombia.iom.int/sites/colombia/files/EYE/Vocacion/INFORME%20DTM%20VILLA%20DEL%20 ROSARIO.pdf (accessed on 10 December 2021). | spa |
dcterms.references | Ministerio de Salud y Protección Social de Colombia. Ten-Year Public Health Plan 2012–2021 of Colombia. 2012. Available online: https://www3.paho.org/hq/index.php?option=com_content&view=article&id=8777:2013-plan-decenal-salud-publica2012-2021-colombia&Itemid=40264&lang=es (accessed on 11 September 2021). | spa |
dcterms.references | Ministerio de Salud y Protección Social de Colombia. ABC of the Ten-Year Public Health Plan. Available online: https: //www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/ED/PSP/IMP_4feb+ABCminsalud.pdf (accessed on 11 September 2021). | spa |
dcterms.references | Instituto Departamental de Salud de Norte de Santander. Health Situation Analysis with the Social Determinants Model Norte de Santander Department 2019, Colombia. 2019. Available online: https://ids.gov.co/web/2020/TRANSPARENCIA/ASIS_ DPTAL_NTE%20SDER_2019_ABRIL_2020.pdf (accessed on 10 December 2021). | spa |
dcterms.references | Athimulam, A.; Kumaresan, S.; Foo, D.; Sarmidi, M.; Aziz, R. Modelling and Optimization of Eurycoma longifolia Water Extract Production. Food Bioprod. Process. 2006, 84, 139–149. [CrossRef] | spa |
dcterms.references | Sparrow, E.; Wood, J.G.; Chadwick, C.; Newall, A.T.; Torvaldsen, S.; Moen, A.; Torelli, G. Global production capacity of seasonal and pandemic influenza vaccines in 2019. Vaccine 2021, 39, 512–520. [CrossRef] [PubMed] | spa |
dcterms.references | Jiang, B.; Patel, M.; Glass, R.I. Polio endgame: Lessons for the global rotavirus vaccination program. Vaccine 2019, 37, 3040–3049. [CrossRef] | spa |
dcterms.references | Canizales, L.; Rojas, F.; Pizarro, C.A.; Caicedo-Ortega, N.H.; Villegas-Torres, M.F. SuperPro Designer®, User-Oriented Software Used for Analyzing the Techno-Economic Feasibility of Electrical Energy Generation from Sugarcane Vinasse in Colombia. Processes 2020, 8, 1180. [CrossRef] | spa |
dcterms.references | Ernst, S.; Garro, O.A.; Winkler, S.; Venkataraman, G.; Langer, R.; Cooney, C.L.; Sasisekharan, R. Process simulation for recombinant protein production: Cost estimation and sensitivity analysis for heparinase I expressed in Escherichia coli. Biotechnol. Bioeng. 1997, 53, 575–582. [CrossRef] | spa |
dcterms.references | Huang, D.; Xia-Hou, K.; Liu, X.-P.; Zhao, L.; Fan, L.; Ye, Z.; Tan, W.-S.; Luo, J.; Chen, Z. Rational design of medium supplementation strategy for improved influenza viruses production based on analyzing nutritional requirements of MDCK Cells. Vaccine 2014, 32, 7091–7097. [CrossRef] | spa |
dcterms.references | Genzel, Y. Designing cell lines for viral vaccine production: Where do we stand? Biotechnol. J. 2015, 10, 728–740. [CrossRef] | spa |
dcterms.references | Li, I.; Chan, K.; To, K.; Wong, S.; Ho, P.L.; Lau, S.K.P.; Woo, P.C.Y.; Tsoi, H.; Chan, J.F.-W.; Cheng, V.; et al. Differential susceptibility of different cell lines to swine-origin influenza A H1N1, seasonal human influenza A H1N1, and avian influenza A H5N1 viruses. J. Clin. Virol. 2009, 46, 325–330. [CrossRef] | spa |
dcterms.references | Fontana, D.; Marsili, F.; Garay, E.; Battagliotti, J.; Etcheverrigaray, M.; Kratje, R.; Prieto, C. A simplified roller bottle platform for the production of a new generation VLPs rabies vaccine for veterinary applications. Comp. Immunol. Microbiol. Infect. Dis. 2019, 65, 70–75. [CrossRef] | spa |
dcterms.references | Dewannieux, M.; Ribet, D.; Heidmann, T. Risks linked to endogenous retroviruses for vaccine production: A general overview. Biologicals 2010, 38, 366–370. [CrossRef] | spa |
dcterms.references | George, M.; Farooq, M.; Dang, T.; Cortes, B.; Liu, J.; Maranga, L. Production of cell culture (MDCK) derived live attenuated influenza vaccine (LAIV) in a fully disposable platform process. Biotechnol. Bioeng. 2010, 106, 906–917. [CrossRef] | spa |
dcterms.references | Limonta, M.; Krajnc, N.L.; Vidiˇc, U.; Zumalacárregui, L. Simulation for the recovery of plasmid for a DNA vaccine. Biochem. Eng. J. 2013, 80, 14–18. [CrossRef] | spa |
dcterms.references | Petrides, D.; Carmichael, D.; Siletti, C.; Koulouris, A. Biopharmaceutical Process Optimization with Simulation and Scheduling Tools. Bioengineering 2014, 1, 154. [CrossRef] | spa |
dcterms.references | Liu, J.; Mani, S.; Schwartz, R.; Richman, L.; Tabor, D.E. Cloning and assessment of tumorigenicity and oncogenicity of a Madin–Darby canine kidney (MDCK) cell line for influenza vaccine production. Vaccine 2010, 28, 1285–1293. [CrossRef] | spa |
dcterms.references | Guerriero, V. Power Law Distribution: Method of Multi-Scale Inferential Statistics. J. Mod. Math. Front. JMMF 2012, 1, 21–28. | spa |
dcterms.references | Youil, R.; Su, Q.; Toner, T.; Szymkowiak, C.; Kwan, W.-S.; Rubin, B.; Petrukhin, L.; Kiseleva, I.; Shaw, A.; DiStefano, D. Comparative study of influenza virus replication in Vero and MDCK cell lines. J. Virol. Methods 2004, 120, 23–31. [CrossRef] | spa |
dcterms.references | Valero, Y.; Olveira, J.; López-Vázquez, C.; Dopazo, C.; Bandín, I. BEI Inactivated Vaccine Induces Innate and Adaptive Responses and Elicits Partial Protection upon Reassortant Betanodavirus Infection in Senegalese Sole. Vaccines 2021, 9, 458. [CrossRef] | spa |
dcterms.references | Moyle, P.M. Progress in Vaccine Development. Curr. Protoc. Microbiol. 2015, 36, 18.1.1–18.1.26. [CrossRef] | spa |
dcterms.references | Frey, S.; Vesikari, T.; Szymczakiewicz-Multanowska, A.; Lattanzi, M.; Izu, A.; Groth, N.; Holmes, S. Clinical Efficacy of Cell Culture–Derived and Egg-Derived Inactivated Subunit Influenza Vaccines in Healthy Adults. Clin. Infect. Dis. 2010, 51, 997–1004. [CrossRef] | spa |
dcterms.references | Bart, S.; Cannon, K.; Herrington, D.; Mills, R.; Forleo-Neto, E.; Lindert, K.; Mateen, A.A. Immunogenicity and safety of a cell culture-based quadrivalent influenza vaccine in adults: A Phase III, double-blind, multicenter, randomized, non-inferiority study. Hum. Vaccines Immunother. 2016, 12, 2278–2288. [CrossRef] | spa |
dcterms.references | Hartvickson, R.; Cruz, M.; Ervin, J.; Brandon, D.; Forleo-Neto, E.; Dagnew, A.F.; Chandra, R.; Lindert, K.; Mateen, A.A. Noninferiority of mammalian cell-derived quadrivalent subunit influenza virus vaccines compared to trivalent subunit influenza virus vaccines in healthy children: A phase III randomized, multicenter, double-blind clinical trial. Int. J. Infect. Dis. 2015, 41, 65–72. [CrossRef] | spa |
dcterms.references | Ambrozaitis, A.; Groth, N.; Bugarini, R.; Sparacio, V.; Podda, A.; Lattanzi, M. A novel mammalian cell-culture technique for consistent production of a well-tolerated and immunogenic trivalent subunit influenza vaccine. Vaccine 2009, 27, 6022–6029. [CrossRef] | spa |
dcterms.references | Szymczakiewicz-Multanowska, A.; Groth, N.; Bugarini, R.; Lattanzi, M.; Casula, D.; Hilbert, A.; Tsai, T.; Podda, A. Safety and Immunogenicity of a Novel Influenza Subunit Vaccine Produced in Mammalian Cell Culture. J. Infect. Dis. 2009, 200, 841–848. [CrossRef] | spa |
dcterms.references | Ministerio de Salud y Protección Social de Colombia. Guidelines for the Management and Administration of the Expanded Program on Immunization—API—2020, Colombia, 2020. Available online: https://www.minsalud.gov.co/sites/rid/Lists/ BibliotecaDigital/RIDE/VS/PP/ET/lineamientos-nacionales-pai2020.pdf (accessed on 10 December 2021). | spa |
dcterms.references | Aliya Mohamad Ros, F.N.; Rahman, N.A.; Ali, J.M.; Anuar, N.; Abdullah, S.R.B.S.; Yusoff, A.F.B.J. Comparative Study between Avian Cell and Mammalian Cell in Production of Influenza Vaccine Shariah Compliance. IOP Conf. Series Mater. Sci. Eng. 2020, 778, 12029. [CrossRef] | spa |
dcterms.references | Farid, S.S. Process economics of industrial monoclonal antibody manufacture. J. Chromatogr. B 2007, 848, 8–18. [CrossRef] | spa |
dcterms.references | Nestola, P.; Peixoto, C.; Silva, R.R.J.S.; Alves, P.M.; Mota, J.P.B.; Carrondo, M.J.T. Improved virus purification processes for vaccines and gene therapy. Biotechnol. Bioeng. 2015, 112, 843–857. [CrossRef] | spa |
dcterms.references | Yang, W.C.; Lu, J.; Kwiatkowski, C.; Yuan, H.; Kshirsagar, R.; Ryll, T.; Huang, Y.-M. Perfusion Seed Cultures Improve Biopharmaceutical Fed-Batch Production Capacity and Product Quality. Biotechnol. Prog. 2014, 30, 616–625. [CrossRef] | spa |
dcterms.references | Tapia, F.; Vázquez-Ramírez, D.; Genzel, Y.; Reichl, U. Bioreactors for high cell density and continuous multi-stage cultivations: Options for process intensification in cell culture-based viral vaccine production. Appl. Microbiol. Biotechnol. 2016, 100, 2121–2132. [CrossRef] | spa |
dcterms.references | Xu, J.; Xu, X.; Huang, C.; Angelo, J.; Oliveira, C.L.; Xu, M.; Xu, X.; Temel, D.; Ding, J.; Ghose, S.; et al. Biomanufacturing evolution from conventional to intensified processes for productivity improvement: A case study. MAbs 2020, 12, 1770669. [CrossRef] | spa |
dcterms.references | Rubio, A.P.; Eiros, J.M. Cell culture-derived flu vaccine: Present and future. Hum. Vaccines Immunother. 2018, 14, 1874–1882. [CrossRef] [PubMed] | spa |
dcterms.references | Lee, B.Y.; Connor, D.L.; Wateska, A.R.; Norman, B.A.; Rajgopal, J.; Cakouros, B.E.; Chen, S.-I.; Claypool, E.G.; Haidari, L.A.; Karir, V.; et al. Landscaping the structures of GAVI country vaccine supply chains and testing the effects of radical redesign. Vaccine 2015, 33, 4451–4458. [CrossRef] [PubMed] | spa |
dcterms.references | Chen, S.-I.; Norman, B.A.; Rajgopal, J.; Assi, T.M.; Lee, B.Y.; Brown, S. A planning model for the WHO-EPI vaccine distribution network in developing countries. IIE Trans. 2014, 46, 853–865. [CrossRef] | spa |
dcterms.references | Haidari, L.A.; Connor, D.L.; Wateska, A.R.; Brown, S.T.; Mueller, L.E.; Norman, B.A.; Schmitz, M.M.; Paul, P.; Rajgopal, J.; Welling, J.S.; et al. Augmenting Transport versus Increasing Cold Storage to Improve Vaccine Supply Chains. PLoS ONE 2013, 8, e64303. [CrossRef] | spa |
dcterms.references | Lemmens, S.; Decouttere, C.; Vandaele, N.; Bernuzzi, M. A review of integrated supply chain network design models: Key issues for vaccine supply chains. Chem. Eng. Res. Des. 2016, 109, 366–384. [CrossRef] | spa |
dc.identifier.doi | https://doi.org/10.3390/app12010183 | |
dc.relation.citationedition | Vol.12 No.183 (2022) | spa |
dc.relation.citationendpage | 9 | spa |
dc.relation.citationissue | 183.(2022) | spa |
dc.relation.citationstartpage | 1 | spa |
dc.relation.citationvolume | 12 | spa |
dc.relation.cites | Contreras-Ropero, J.E.; Ruiz-Roa, S.L.; García-Martínez, J.B.; Urbina-Suarez, N.A.; López-Barrera, G.L.; Barajas-Solano, A.F.; Zuorro, A. A Simulation Analysis of an Influenza Vaccine Production Plant in Areas of High Humanitarian Flow. A Preliminary Study for the Region of Norte de Santander (Colombia). Appl. Sci. 2022, 12, 183. https://doi.org/ 10.3390/app12010183 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.subject.proposal | modeling process | eng |
dc.subject.proposal | SuperPro Designer® | eng |
dc.subject.proposal | cell culture | eng |
dc.subject.proposal | public health | eng |
dc.subject.proposal | developing countries | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |