dc.contributor.author | Urbina-Suarez, Nestor Andres | |
dc.contributor.author | Rivera Caicedo, Christian | |
dc.contributor.author | González-Delgado, Angel Darío | |
dc.contributor.author | Barajas Solano, andres F | |
dc.contributor.author | Machuca-Martínez, Fiderman | |
dc.date.accessioned | 2024-04-01T16:17:27Z | |
dc.date.available | 2024-04-01T16:17:27Z | |
dc.date.issued | 2023-04-11 | |
dc.identifier.uri | https://repositorio.ufps.edu.co/handle/ufps/6778 | |
dc.description.abstract | : The textile industry is a global economic driving force; however, it is also one of the most
polluting industries, with highly toxic effluents which are complex to treat due to the recalcitrant
nature of some compounds present in these effluents. This research focuses on the removal of
Chemical Oxygen Demand (COD), color, Total Organic Carbon (TOC), and Ammoniacal Nitrogen
(N-NH3
) on tannery wastewater treatment through an advanced oxidation process (AOPs) using
sodium bicarbonate (NaHCO3
), hydrogen peroxide (H2O2
) and temperature using a central composite non-factorial design with a surface response using Statistica 7.0 software. All experiments used
a 500 mL reactor with 300 mL of tannery wastewater from a company in Cúcuta, Colombia. The
physicochemical characterization was done to determine the significant absorbance peaks about the
color in the wavelengths between 297 and 669 nm. Statistical analysis found that the concentration
of NaHCO3 affects the removal of color and N-NH3
; however, it did not affect COD and TOC. The
optimal process conditions for removing the different compounds under study were: NaHCO3 1 M,
H2O2 2 M, and 60 ◦C, with efficiencies of 92.35%, 31.93%, 68.85%, and 35.5% N-NH3
, COD, color, and TOC respectively. It can be concluded that AOPs using H2O2 and NaHCO3 are recommended to remove color and N-NH3. | eng |
dc.format.extent | 21 Páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Toxics | spa |
dc.relation.ispartof | Urbina-Suarez, N.A.; Rivera-Caicedo, C.; González-Delgado, Á.D.; Barajas-Solano, A.F.; Machuca-Martínez, F. Bicarbonate-Hydrogen Peroxide System for Treating Dyeing Wastewater: Degradation of Organic Pollutants and Color Removal. Toxics 2023, 11, 366. https://doi.org/ 10.3390/toxics11040366 | |
dc.rights | under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). | eng |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | spa |
dc.source | https://www.mdpi.com/2305-6304/11/4/366 | spa |
dc.title | Bicarbonate-Hydrogen Peroxide System for Treating Dyeing Wastewater: Degradation of Organic Pollutants and Color Removal | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Tounsadi, H.; Metarfi, Y.; Taleb, M.; El Rhazi, K.; Rais, Z. Impact of chemical substances used in textile industry on the employee’s health: Epidemiological study. Ecotoxicol. Environ. Saf. 2020, 197, 110594. [CrossRef] [PubMed] | spa |
dcterms.references | Tkaczyk, A.; Mitrowska, K.; Posyniak, A. Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Sci. Total Environ. 2020, 717, 137222. [CrossRef] [PubMed] | spa |
dcterms.references | Azimi, B.; Abdollahzadeh-Sharghi, E.; Bonakdarpour, B. Anaerobic-aerobic processes for the treatment of textile dyeing wastewater containing three commercial reactive azo dyes: Effect of number of stages and bioreactor type. Chin. J. Chem. Eng. 2020, 39, 228–239. [CrossRef] | spa |
dcterms.references | Sarker, M.R.; Chowdhury, M.; Deb, A. Reduction of Color Intensity from Textile Dye Wastewater Using Microorganisms: A Review. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 3407–3415. [CrossRef] | spa |
dcterms.references | Al Prol, A.E. Study of Environmental Concerns of Dyes and Recent Textile Effluents Treatment Technology: A Review. Asian J. Fish. Aquat. Res. 2019, 3, 1–18. [CrossRef] | spa |
dcterms.references | Qadeer, H.A.; Fawzi Mahomoodally, M.; Nadeem, F.; Khanam, A. Wastewater Treatment and Dyes Removal Using Electrocoagulation aided by Natural Biosorbents—A Review. Int. J. Chem. Biochem. Sci. 2018, 14, 77–87. | spa |
dcterms.references | Al-Ghouti, M.A.; Khraisheh, M.A.M.; Allen, S.J.; Ahmad, M.N. The removal of dyes from textile wastewater: A study of the physical characteristics and adsorption mechanisms of diatomaceous earth. J. Environ. Manag. 2003, 69, 229–238. [CrossRef] | spa |
dcterms.references | Waranusantigul, P.; Pokethitiyook, P.; Kruatrachue, M.; Upatham, E.S. Kinetics of basic dye (methylene blue) biosorption by giant duckweed (Spirodela polyrrhiza). Environ. Pollut. 2003, 125, 385–392. [CrossRef] | spa |
dcterms.references | Janaina, A.K.; Miguel, P.; Davi, B.G.; Barrella, W. Textile sustainability: A Brazilian etiquette issue. Environ. Sci. Policy 2020, 109, 125–130. [CrossRef] | spa |
dcterms.references | Amutha, K. Sustainable chemical management and zero discharges. In Sustainable Fibres and Textiles; Muthu, S.S., Ed.; Woodhead Publishing: Duxford, UK, 2017. | spa |
dcterms.references | Bharagava, R.N.; Chowdhary, P. Textile wastewater dyes: Toxicity profile and treatment approaches. In Emerging and Eco-Friendly Approaches for Waste Management; Bharagava, R.N., Chowdhary, P., Eds.; Springer: Singapore, 2018; pp. 1–435. | spa |
dcterms.references | Atalay, S.; Ersöz, G. Hybrid application of advanced oxidation processes to dyes0 removal. In Green Chemistry and Water Remediation: Research and Applications; Sharma, S.K., Ed.; Elsevier: Amsterdam, The Netherlands, 2021. | spa |
dcterms.references | Rekhate, C.V.; Srivastava, J.K. Recent advances in ozone-based advanced oxidation processes for treatment of wastewater—A review. Chem. Eng. J. Adv. 2020, 3, 100031. [CrossRef] | spa |
dcterms.references | Babu, D.S.; Srivastava, V.; Nidheesh, P.V.; Kumar, M.S. Detoxification of water and wastewater by advanced oxidation processes. Sci. Total Environ. 2019, 696, 133961. [CrossRef] | spa |
dcterms.references | Urbina-Suarez, N.A.; Machuca-Martínez, F.; Barajas-Solano, A.F. Advanced Oxidation Processes and Biotechnological Alternatives for the Treatment of Tannery Wastewater. Molecules 2021, 26, 3222. [CrossRef] | spa |
dcterms.references | Urbina-Suarez, N.A.; Ayala-González, D.D.; Rivera-Amaya, J.D.; Barajas-Solano, A.F.; Machuca-Martínez, F. Evaluation of the Light/Dark Cycle and Concentration of Tannery Wastewater in the Production of Biomass and Metabolites of Industrial Interest from Microalgae and Cyanobacteria. Water 2022, 14, 346. [CrossRef] | spa |
dcterms.references | Su, R.; Chai, L.; Tang, C.; Li, B.; Yang, Z. Comparison of the degradation of molecular and ionic ibuprofen in a UV/H2O2 system. Water Sci. Technol. 2018, 77, 2174–2183. [CrossRef] | spa |
dcterms.references | Pan, H.; Gao, Y.; Li, N.; Zhou, Y.; Lin, Q.; Jiang, J. Recent advances in bicarbonate-activated hydrogen peroxide system for water treatment. Chem. Eng. J. 2021, 408, 127332. [CrossRef] | spa |
dcterms.references | Roy, M.; Saha, R. Dyes and their removal technologies from wastewater: A critical review. In Intelligent Environmental Data Monitoring for Pollution Management; Bhattacharyya, S., Mondal, N.K., Platos, J., Snášel, V., Krömer, P., Eds.; Academic Press: London, UK, 2021. | spa |
dcterms.references | Kan, H.; Soklun, H.; Yang, Z.; Wu, R.; Shen, J.; Qu, G.; Wang, T. Purification of dye wastewater using bicarbonate activated hydrogen peroxide: Reaction process and mechanisms. Sep. Purif. Technol. 2020, 232, 115974. [CrossRef] | spa |
dcterms.references | Nidheesh, P.V.; Scaria, J.; Babu, D.S.; Kumar, M.S. An overview on combined electrocoagulation-degradation processes for the effective treatment of water and wastewater. Chemosphere 2021, 263, 127907. [CrossRef] | spa |
dcterms.references | Collivignarelli, M.C.; Abbà, A.; Carnevale Miino, M.; Damiani, S. Treatments for color removal from wastewater: State of the art. J. Environ. Manag. 2019, 236, 727–745. [CrossRef] | spa |
dcterms.references | Wang, T.; Wang, Q.; Soklun, H.; Qu, G.; Xia, T.; Guo, X.; Jia, H.; Zhu, L. A green strategy for simultaneous Cu(II)-EDTA decomplexation and Cu precipitation from water by bicarbonate-activated hydrogen peroxide/chemical precipitation. Chem. Eng. J. 2019, 370, 1298–1309. [CrossRef] | spa |
dcterms.references | Li, Y.; Li, L.; Chen, Z.X.; Zhang, J.; Gong, L.; Wang, Y.X.; Zhao, H.Q.; Mu, Y. Carbonate-activated hydrogen peroxide oxidation process for azo dye decolorization: Process, kinetics, and mechanisms. Chemosphere 2018, 192, 372–378. [CrossRef] | spa |
dcterms.references | Puiu, M.; Galaon, T.; Bondila, L.; R ˇ aducan, A.; Oancea, D. Feed-back action of nitrite in the oxidation of nitrophenols by ˇ bicarbonate-activated peroxide system. Appl. Catal. A Gen. 2016, 516, 90–99. [CrossRef] | spa |
dcterms.references | Sökmen, M.; Özkan, A. Decolourising textile wastewater with modified titania: The effects of inorganic anions on the photocatalysis. J. Photochem. Photobiol. A Chem. 2002, 147, 77–81. [CrossRef] | spa |
dcterms.references | APHA. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; 2017APHA/AWWA/WEF; American Public Health Association: Washington, DC, USA, 2017 | spa |
dcterms.references | Silva, L.G.M.; Moreira, F.C.; Cechinel, M.A.P.; Mazur, L.P.; de Souza, A.A.U.; Souza, S.M.A.G.U.; Boaventura, R.A.R.; Vilar, V.J.P. Integration of Fenton’s reaction based processes and cation exchange processes in textile wastewater treatment as a strategy for water reuse. J. Environ. Manag. 2020, 272, 111082. [CrossRef] | spa |
dcterms.references | Hussain, Z.; Arslan, M.; Shacir, G.; Malik, M.H.; Mohsin, M.; Iqbal, S.; Afzal, M. Remediation of textile bleaching effluent by bacterial augmented horizontal flow and vertical flow constructed wetlands: A comparison at pilot scale. Sci. Total Environ. 2019, 685, 370–379. [CrossRef] [PubMed] | spa |
dcterms.references | Sen, S.K.; Patra, P.; Das, C.R.; Raut, S.; Raut, S. Pilot-scale evaluation of bio-decolorization and biodegradation of reactive textile wastewater: An impact on its use in irrigation of wheat crop. Water Resour. Ind. 2019, 21, 100106. [CrossRef] | spa |
dcterms.references | Subashini, P.S.; Rajiv, P. An investigation of textile wastewater treatment using chlorella vulgaris. Orient. J. Chem. 2018, 34, 2517–2524. [CrossRef] | spa |
dcterms.references | Assémian, A.S.; Kouassi, K.E.; Zogbe, A.E.; Adouby, K.; Drogui, P. In-situ generation of effective coagulant to treat textile bio-refractory wastewater: Optimization through response surface methodology. J. Environ. Chem. Eng. 2018, 6, 5587–5594. [CrossRef] | spa |
dcterms.references | Curi´c, I.; Dolar, D.; Karadaki´c, K. Textile wastewater reusability in knitted fabric washing process using UF membrane technology. ´ J. Clean. Prod. 2021, 299, 126899. [CrossRef] | spa |
dcterms.references | Esther Baby, J.; Jaambavi, I.; Rajeswari, G.; Akshaya, T. Optimization removal of colour and organic solid pollutants from textile industry wastewater by electrocoagulation. Mater. Today Proc. 2021. [CrossRef] | spa |
dcterms.references | Ministerio de Ambiente y Desarrollo Sostenible. Resolución 0631 de 2015; Ministerio de Ambiente y Desarrollo Sostenible: Bogotá, Colombia, 2015. | spa |
dcterms.references | Guedes, A.M.F.M.; Madeira, L.M.P.; Boaventura, R.A.R.; Costa, C.A.V. Fenton oxidation of cork cooking wastewater—Overall kinetic analysis. Water Res. 2003, 37, 3061–3069. [CrossRef] | spa |
dcterms.references | Zhang, H.; Heung, J.C.; Huang, C.P. Optimization of Fenton process for the treatment of landfill leachate. J. Hazard. Mater. 2005, 125, 166–174. [CrossRef] | spa |
dcterms.references | Medley, D.R.; Stover, E.L. Effects of Ozone on the Biodegradability of Biorefractory Pollutants on JSTOR. J. Water Pollut. Control Fed. 1983, 55, 489–494. | spa |
dcterms.references | Hansson, H.; Kaczala, F.; Marques, M.; Hogland, W. Photo-Fenton and Fenton oxidation of recalcitrant industrial wastewater using nanoscale zero-valent iron. Int. J. Photoenergy 2012, 2012, 531076. [CrossRef] | spa |
dcterms.references | A ˘gta¸s, M.; Yılmaz, Ö.; Dilaver, M.; Alp, K.; Koyuncu, ˙I. Hot water recovery and reuse in textile sector with pilot scale ceramic ultrafiltration/nanofiltration membrane system. J. Clean. Prod. 2020, 256, 120359. [CrossRef] | spa |
dcterms.references | Jawad, A.; Li, Y.; Lu, X.; Chen, Z.; Liu, W.; Yin, G. Controlled leaching with prolonged activity for Co-LDH supported catalyst during treatment of organic dyes using bicarbonate activation of hydrogen peroxide. J. Hazard. Mater. 2015, 289, 165–173. [CrossRef] | spa |
dcterms.references | Yang, Z.; Wang, H.; Chen, M.; Luo, M.; Xia, D.; Xu, A.; Zeng, Q. Fast Degradation and Biodegradability Improvement of Reactive Brilliant Red X-3B by the Cobalt(II)/Bicarbonate/Hydrogen Peroxide System. Ind. Eng. Chem. Res. 2012, 51, 11104–11111. [CrossRef] | spa |
dcterms.references | Balagam, B.; Richardson, D.E. The mechanism of carbon dioxide catalysis in the hydrogen peroxide N-oxidation of amines. Inorg. Chem. 2008, 47, 1173–1178. [CrossRef] | spa |
dcterms.references | Bennett, D.A.; Yao, H.; Richardson, D.E. Mechanism of sulfide oxidations by peroxymonocarbonate. Inorg. Chem. 2001, 40, 2996–3001. [CrossRef] | spa |
dcterms.references | Yao, H.; Richardson, D.E. Bicarbonate surfoxidants: Micellar oxidations of aryl sulfides with bicarbonate-activated hydrogen peroxide. J. Am. Chem. Soc. 2003, 125, 6211–6221. [CrossRef] | spa |
dcterms.references | Jawad, A.; Lu, X.; Chen, Z.; Yin, G. Degradation of chlorophenols by supported Co-Mg-Al layered double hydrotalcite with bicarbonate activated hydrogen peroxide. J. Phys. Chem. A 2014, 118, 10028–10035. [CrossRef] | spa |
dcterms.references | Zhao, T.; Li, P.; Tai, C.; She, J.; Yin, Y.; Qi, Y.; Zhang, G. Efficient decolorization of typical azo dyes using low-frequency ultrasound in presence of carbonate and hydrogen peroxide. J. Hazard. Mater. 2018, 346, 42–51. [CrossRef] [PubMed] | spa |
dcterms.references | Pillai, I.M.S.; Gupta, A.K. Performance analysis of a continuous serpentine flow reactor for electrochemical oxidation of synthetic and real textile wastewater: Energy consumption, mass transfer coefficient and economic analysis. J. Environ. Manag. 2017, 193, 524–531. [CrossRef] [PubMed] | spa |
dcterms.references | Ghanbari, F.; Ahmadi, M.; Gohari, F. Heterogeneous activation of peroxymonosulfate via nanocomposite CeO2 -Fe3O4 for organic pollutants removal: The effect of UV and US irradiation and application for real wastewater. Sep. Purif. Technol. 2019, 228, 115732. [CrossRef] | spa |
dcterms.references | Nikravesh, B.; Shomalnasab, A.; Nayyer, A.; Aghababaei, N.; Zarebi, R.; Ghanbari, F. UV/Chlorine process for dye degradation in aqueous solution: Mechanism, affecting factors and toxicity evaluation for textile wastewater. J. Environ. Chem. Eng. 2020, 8, 104244. [CrossRef] | spa |
dcterms.references | Adar, E. Removal of Acid Yellow 17 from Textile Wastewater by Adsorption and Heterogeneous Persulfate Oxidation. Int. J. Environ. Sci. Technol. 2021, 18, 483–498. [CrossRef] | spa |
dcterms.references | Ruffino, B.; Zanetti, M. Orthophosphate vs. bicarbonate used as a buffering substance for optimizing the bromide-enhanced ozonation process for ammonia nitrogen removal. Sci. Total Environ. 2019, 692, 1191–1200. [CrossRef] | spa |
dcterms.references | Módenes, A.N.; Espinoza-Quiñones, F.R.; Manenti, D.R.; Borba, F.H.; Palácio, S.M.; Colombo, A. Performance evaluation of a photo-Fenton process applied to pollutant removal from textile effluents in a batch system. J. Environ. Manag. 2012, 104, 1–8. [CrossRef] | spa |
dcterms.references | Jó´zwiakowski, K.; Marzec, M.; Fiedurek, J.; Kami ´nska, A.; Gajewska, M.; Wojciechowska, E.; Wu, S.; Dach, J.; Marczuk, A.; Kowlaczyk-Ju´sko, A. Application of H2O2 to optimize ammonium removal from domestic wastewater. Sep. Purif. Technol. 2017, 173, 357–363. [CrossRef] | spa |
dcterms.references | Ribeiro, A.R.; Nunes, O.C.; Pereira, M.F.R.; Silva, A.M.T. An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU. Environ. Int. 2015, 75, 33–51. [CrossRef] | spa |
dcterms.references | Michael-Kordatou, I.; Michael, C.; Duan, X.; He, X.; Dionysiou, D.D.; Mills, M.A.; Fatta-Kassinos, D. Dissolved effluent organic matter: Characteristics and potential implications in wastewater treatment and reuse applications. Water Res. 2015, 77, 213–248. [CrossRef] | spa |
dcterms.references | Michael, I.; Hapeshi, E.; Osorio, V.; Perez, S.; Petrovic, M.; Zapata, A.; Malato, S.; Barceló, D.; Fatta-Kassinos, D. Solar photocatalytic treatment of trimethoprim in four environmental matrices at a pilot scale: Transformation products and ecotoxicity evaluation. Sci. Total Environ. 2012, 430, 167–173. [CrossRef] | spa |
dcterms.references | Hanna, P.M.; Kadiiska, M.B.; Mason, R.P. Oxygen-Derived Free Radical and Active Oxygen Complex Formation from Cobalt(II) Chelates in Vitro. Chem. Res. Toxicol. 1992, 5, 109–115. [CrossRef] | spa |
dcterms.references | Guo, X.; Li, H.; Zhao, S. Fast degradation of Acid Orange II by bicarbonate-activated hydrogen peroxide with a magnetic S-modified CoFe2O4 catalyst. J. Taiwan Inst. Chem. Eng. 2015, 55, 90–100. [CrossRef] | spa |
dcterms.references | Bulca, Ö.; Palas, B.; Atalay, S.; Ersöz, G. Performance investigation of the hybrid methods of adsorption or catalytic wet air oxidation subsequent to electrocoagulation in treatment of real textile wastewater and kinetic modelling. J. Water Process Eng. 2021, 40, 101821. [CrossRef] | spa |
dcterms.references | Rajoriya, S.; Bargole, S.; George, S.; Saharan, V.K. Treatment of textile dyeing industry effluent using hydrodynamic cavitation in combination with advanced oxidation reagents. J. Hazard. Mater. 2018, 344, 1109–1115. [CrossRef] | spa |
dcterms.references | GilPavas, E.; Dobrosz-Gómez, I.; Gómez-García, M.Á. Optimization and toxicity assessment of a combined electrocoagulation, H2O2/Fe2+/UV and activated carbon adsorption for textile wastewater treatment. Sci. Total Environ. 2019, 651, 551–560. [CrossRef] | spa |
dcterms.references | Jaafarzadeh, N.; Takdastan, A.; Jorfi, S.; Ghanbari, F.; Ahmadi, M.; Barzegar, G. The performance study on ultrasonic/Fe3O4/H2O2 for degradation of azo dye and real textile wastewater treatment. J. Mol. Liq. 2018, 256, 462–470. [CrossRef] | spa |
dcterms.references | Su, R.; Dai, X.; Wang, H.; Wang, Z.; Li, Z.; Chen, Y.; Luo, Y.; Ouyang, D. Metronidazole Degradation by UV and UV/H2O2 Advanced Oxidation Processes: Kinetics, Mechanisms, and Effects of Natural Water Matrices. Int. J. Environ. Res. Public Health 2022, 19, 12354. [CrossRef] | spa |
dcterms.references | Kiani, R.; Mirzaei, F.; Ghanbari, F.; Feizi, R.; Mehdipour, F. Real textile wastewater treatment by a sulfate radicals-Advanced Oxidation Process: Peroxydisulfate decomposition using copper oxide (CuO) supported onto activated carbon. J. Water Process Eng. 2020, 38, 101623. [CrossRef] | spa |
dcterms.references | Sahinkaya, S. COD and color removal from synthetic textile wastewater by ultrasound assisted electro-Fenton oxidation process. J. Ind. Eng. Chem. 2013, 19, 601–605. [CrossRef] | spa |
dcterms.references | Wu, T.; Englehardt, J.D. A new method for removal of hydrogen peroxide interference in the analysis of chemical oxygen demand. Environ. Sci. Technol. 2012, 46, 2291–2298. [CrossRef] [PubMed] | spa |
dcterms.references | Yaseen, D.A.; Scholz, M. Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. Int. J. Environ. Sci. Technol. 2019, 16, 1193–1226. [CrossRef] | spa |
dcterms.references | Pani, N.; Tejani, V.; Anantha-Singh, T.S.; Kandya, A. Simultaneous removal of COD and Ammoniacal Nitrogen from dye intermediate manufacturing Industrial Wastewater using Fenton oxidation method. Appl. Water Sci. 2020, 10, 66. [CrossRef] | spa |
dcterms.references | Cifcioglu-Gozuacik, B.; Ergenekon, S.M.; Ozbey-Unal, B.; Balcik, C.; Karagunduz, A.; Dizge, N.; Keskinler, B. Efficient removal of ammoniacal nitrogen from textile printing wastewater by electro-oxidation considering the effects of NaCl and NaOCl addition. Water Sci. Technol. 2021, 84, 752–762. [CrossRef] [PubMed] | spa |
dcterms.references | Suryawan, I.W.K.; Prajati, G.; Afifah, A.S.; Apritama, M.R. Nh3-n and cod reduction in endek (Balinese textile) wastewater by activated sludge under different do condition with ozone pretreatment. Walailak J. Sci. Technol. 2021, 18, 9127. [CrossRef] | spa |
dcterms.references | Eslami, A.; Mehdipour, F.; Lin, K.Y.A.; Sharifi Maleksari, H.; Mirzaei, F.; Ghanbari, F. Sono-photo activation of percarbonate for the degradation of organic dye: The effect of water matrix and identification of by-products. J. Water Process Eng. 2020, 33, 100998. [CrossRef] | spa |
dcterms.references | Ovhal, S.D.; Rodrigues, C.S.D.; Madeira, L.M. Photocatalytic wet peroxide assisted degradation of Orange II dye by reduced graphene oxide and zeolites. J. Chem. Technol. Biotechnol. 2021, 96, 349–359. [CrossRef] | spa |
dcterms.references | Yuan, R.; Ramjaun, S.N.; Wang, Z.; Liu, J. Effects of chloride ion on degradation of Acid Orange 7 by sulfate radical-based advanced oxidation process: Implications for formation of chlorinated aromatic compounds. J. Hazard. Mater. 2011, 196, 173–179. [CrossRef] | spa |
dcterms.references | Muthukumar, M.; Selvakumar, N. Studies on the effect of inorganic salts on decolouration of acid dye effluents by ozonation. Dye. Pigment. 2004, 62, 221–228. [CrossRef] | spa |
dcterms.references | Muruganandham, M.; Swaminathan, M. Photochemical oxidation of reactive azo dye with UV–H2O2 process. Dye. Pigment. 2004, 62, 269–275. [CrossRef] | spa |
dcterms.references | Lofrano, G.; Meriç, S.; Zengin, G.E.; Orhon, D. Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: A review. Sci. Total Environ. 2013, 461–462, 265–281. [CrossRef] [PubMed] | spa |
dcterms.references | Zhao, S.; Xi, H.; Zuo, Y.; Wang, Q.; Wang, Z.; Yan, Z. Bicarbonate-activated hydrogen peroxide and efficient decontamination of toxic sulfur mustard and nerve gas simulants. J. Hazard. Mater. 2018, 344, 136–145. [CrossRef] [PubMed] | spa |
dcterms.references | Duan, L.; Chen, Y.; Zhang, K.; Luo, H.; Huang, J.; Xu, A. Catalytic degradation of Acid Orange 7 with hydrogen peroxide using Co x O y -N/GAC catalysts in a bicarbonate aqueous solution. RSC Adv. 2015, 5, 84303–84310. [CrossRef] | spa |
dcterms.references | Boczkaj, G.; Fernandes, A. Wastewater treatment by means of advanced oxidation processes at basic pH conditions: A review. Chem. Eng. J. 2017, 320, 608–633. [CrossRef] | spa |
dcterms.references | Miralles-Cuevas, S.; Darowna, D.; Wanag, A.; Mozia, S.; Malato, S.; Oller, I. Comparison of UV/H2O2 , UV/S2O82−, solar/Fe(II)/H2O2 and solar/Fe(II)/S2O82− at pilot plant scale for the elimination of micro-contaminants in natural water: An economic assessment. Chem. Eng. J. 2017, 310, 514–524. [CrossRef] | spa |
dc.identifier.doi | https://doi.org/ 10.3390/toxics11040366 | |
dc.relation.citationedition | Vol.11.366.(2023) | spa |
dc.relation.citationendpage | 21 | spa |
dc.relation.citationissue | 366 (2023) | spa |
dc.relation.citationstartpage | 1 | spa |
dc.relation.citationvolume | 11 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.subject.proposal | advanced oxidation processes | eng |
dc.subject.proposal | dyes | eng |
dc.subject.proposal | oxidative degradation | eng |
dc.subject.proposal | bicarbonate | eng |
dc.subject.proposal | hydrogen peroxide | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |