Mostrar el registro sencillo del ítem
Effective thermal properties and proximate analysis of coke-coal fines mixtures
dc.contributor.author | Soto Rivero, M F | |
dc.contributor.author | Quintero Garzón, A C | |
dc.contributor.author | Peña Rodríguez, G | |
dc.contributor.author | Miranda Molina, L A | |
dc.contributor.author | Sepulveda Solano, G | |
dc.date.accessioned | 2022-11-22T20:50:46Z | |
dc.date.available | 2022-11-22T20:50:46Z | |
dc.date.issued | 2021-06-04 | |
dc.identifier.uri | https://repositorio.ufps.edu.co/handle/ufps/6591 | |
dc.description.abstract | We report the effective thermal properties at room temperature and proximate analysis of three mixtures of coke and carbon fines formed by uniaxial pressing at 30 MPa. Using differential scanning calorimetry and thermogravimetry, the thermal behavior of the carbon samples was determined. The KD2 Pro® system was used to measure the effective thermal properties, while the proximate analysis was carried out applying the ASTM D 3172-89 standard. It was found for coke fines that in the range between 40.00 °C and 293.94 °C there is a loss in weight of 3.2%, which corresponds to the degradation of low molecular weight volatiles, another degradation was also observed between 90.07 °C and 336.21 °C, and the maximum devolatilization temperature was 579 °C, finally from 700 °C the melting process begins, which corresponds to the formation of coke. It was also observed that the thermal conductivity increases with increasing coke concentration in the sample, and that the mixture with the highest thermal diffusivity was the one formed with 80% coke fines and 20% carbon fines. According to the thermal properties of the samples can be to be used efficiently as fuel. | eng |
dc.format.extent | 06 Páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.relation.ispartof | Journal of Physics: Conference Series, Volume 2046, 5+1 International Meeting for Researchers in Materials and Plasma Technology (5+1 IMRMPT), 2 - 4 June 2021, Medellín, Colombia | |
dc.rights | Published under licence by IOP Publishing Ltd | eng |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | spa |
dc.source | https://iopscience.iop.org/article/10.1088/1742-6596/2046/1/012045 | spa |
dc.title | Effective thermal properties and proximate analysis of coke-coal fines mixtures | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Huntington H, Barrios J, Arora V 2019 Review of key international demand elasticities for major industrializing economies Energy Policy 133 110878 | spa |
dcterms.references | Höök M, Zittel W, Schindler J, Aleklett K 2010 Global coal production outlooks based on a logistic model Fuel 89(11) 3546 | spa |
dcterms.references | Charriau P, Desbrosses N 2016 Global energy trends: towards a peak in energy demand and CO2 emissions (Grenoble: Enerdata) | spa |
dcterms.references | Deng J, Li Q, Xiao Y, Shu C 2017 Experimental study on the thermal properties of coal during pyrolysis, oxidation, and re-oxidation Applied Thermal Engineering 110 1137 | spa |
dcterms.references | Shi Q, Qin Y, Chen Y 2020 Relationship between thermal conductivity and chemical structures of chinese coals ACS Omega 5(29) 18424 | spa |
dcterms.references | Barrera Zapata R, Perez Bayer J F, Salazar Jiménez C 2014 Carbones colombianos: clasificación y caracterización termoquímica para aplicaciones energéticas Revista ION 27(2) 43 | spa |
dcterms.references | Deng J, Li, Xiao Y, Shu C, Zhang Y 2017 Predictive models for thermal diffusivity and specific heat capacity of coals in Huainan mining area, China Thermochimica Acta 656 101 | spa |
dcterms.references | Vosteen H D, Schellschmidt R 2003 Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rock Physics and Chemistry of the Earth 28(9-11) 499 | spa |
dcterms.references | Gutiérrez J, Mora W, Rodríguez L, Ramírez J, Díaz J 2011 Aprovechamiento de partículas de ultrafinos de carbón de una planta lavadora en la producción de coque metalúrgico Ingeniería e Investigación 31(1) 56 | spa |
dcterms.references | American Society for Testing and Materials (ASTM) 2002 Standard Practice for Proximate Analysis of Coal and Coke, ASTM D3172-89 (United States of America: American Society for Testing and Materials) | spa |
dcterms.references | Ma X, Omer S, Zhang W, Riffat S B 2008 Thermal conductivity measurement of two microencapsulated phase change slurries International Journal of Low-Carbon Technologies 3(4) 245 | spa |
dcterms.references | Abramowitz M, Stegun I 1972 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Washington: National Bureau of Standards) | spa |
dcterms.references | Decagon Devices Inc 2016 KD2 Pro Thermal Properties Analyzer, Operator’s Manual (Pullman: Decagon Devices Inc) | spa |
dcterms.references | Sahu S G, Sarkar P, Chakraborty N, Adak A K 2010 Thermogravimetric assessment of combustion characteristics of blends of a coal with different biomass chars Fuel Processing Technology 91(3) 369 | spa |
dcterms.references | Khorami M, Chelgani S, Hower J, Jorjani E 2011 Studies of relationships between free swelling index (FSI) and coal quality by regression and adaptive neuro fuzzy inference system Int. J. Coal. Geo. 85(1) 65 | spa |
dcterms.references | Jain R, Yadav S, Bisht S, Kodavaty J, Yatirajula S 2021 Effect of concentration, size, granularity, shear time and temperature on rheological properties of coal water slurries IOP Conf. Series: Materials Science and Engineering 1126 012027 | spa |
dcterms.references | Kasai A, Murayama T, Ono Y 1993 Measurement of effective thermal conductivity of coke J Stage Iron and Steel 79(1) 20 | spa |
dc.contributor.corporatename | Journal of Physics: Conference Series | spa |
dc.identifier.doi | 10.1088/1742-6596/2046/1/012045 | |
dc.publisher.place | Reino Unido | spa |
dc.relation.citationedition | Vol. 2046 N0.012045 (2021) | spa |
dc.relation.citationendpage | 5 | spa |
dc.relation.citationissue | 012045 (2021) | spa |
dc.relation.citationstartpage | 1 | spa |
dc.relation.citationvolume | Vol.2046 | spa |
dc.relation.cites | M F Soto-Rivero et al 2021 J. Phys.: Conf. Ser. 2046 012045 | |
dc.relation.ispartofjournal | Journal of Physics: Conference Series | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |