Mostrar el registro sencillo del ítem

dc.contributor.authorPiero Rojas, Jhan
dc.contributor.authorRuge, Juan Carlos
dc.contributor.authorCarrillo, Gustavo Adolfo
dc.date.accessioned2022-11-17T21:02:07Z
dc.date.available2022-11-17T21:02:07Z
dc.date.issued2022-09-09
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/6524
dc.description.abstractDetermining the constitutive properties that describe the incipient hydraulic behavior of the materials, including the matrix domains and the distribution of macro and micropores, is crucial to analyzing the preferential water flow in saturated soils, ks, and unsaturated, ku. This study focused on determining the hydraulic conductivity in porous media under total and partial saturation conditions. The infiltration characteristics of three reconstituted soils were evaluated using five suction ranges employing conventional permeameters, an automated dual system, and mini-disk infiltrometers. The experimental cycles were carried out in granular soils with mixtures of diatomaceous soils, iron oxide (Fe2O3 ), and calcium carbonate (CaCO3 ) in 5–40% proportions. The differences between the granular microstructures of each material and the different hydraulic interaction mechanisms (suctione levels) significantly affected the values of ks and ku and the coupling between the pore domains and the defined water regime. Additionally, a lower impact was observed in the data set exposed to higher percentages of Fe2O3 and CaCO3 in different suction ranges, mainly due to a tension effect (meniscus) generated by suction in the granular skeleton. Since both parameters are mutually correlated and have a similar impact between methods and soil cores, ks and ku must be optimized simultaneously in each mechanism analyzed. The main findings of this work result in the confirmation that the unsaturated permeability decreases as suction is imposed on the sample. As well as the addition of different materials with Particle Size Distribution finer than the base sample, it also reveals a reduction in hydraulic conductivity, both saturated and unsaturated.eng
dc.format.extent13spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherApplied Sciencesspa
dc.relation.ispartofApplied Sciences
dc.rights© 2022 by the authors.eng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://www.scopus.com/record/display.uri?eid=2-s2.0-85138602423&doi=10.3390%2fapp12189058&origin=inward&txGid=9897a8a8302b67f7fb75c898285ccb97spa
dc.titleUnsaturated Hydraulic Conductivity in Composite Porous Mediaeng
dc.typeArtículo de revistaspa
dcterms.referencesDurner, W.; Flühler, H. Soil Hydraulic Properties. In Encyclopedia of Hydrological Sciences; Wiley Online Library: Hoboken, NJ, USA, 2006; Volume HS077, pp. 1–32.spa
dcterms.referencesHunt, A.G.; Ghanbarian, B.; Saville, K.C. Unsaturated hydraulic conductivity modeling for porous media with two fractal regimes. Geoderma 2013, 207, 268–278.spa
dcterms.referencesBrooks, R.; Corey, A. Hydraulic properties of porous media. In Hydrology Papers 3; Colorado State University: Fort Collins, CO, USA, 1964; pp. 1–27.spa
dcterms.referencesvan Genuchten, M. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 8, 892–898.spa
dcterms.referencesFredlund, D.G.; Xing, A. Equations for the soil-water characteristic curve. Can. Geotech. J. 1994, 31, 512–532.spa
dcterms.referencesGallage, C.; Kodikara, J.; Uchimura, T. Laboratory measurement of hydraulic conductivity functions of two unsaturated sandy soils during drying and wetting processes. Soils Found. 2013, 53, 417–430spa
dcterms.referencesHall, K.D. Comparison of falling-head and constant-head techniques: Estimating field permeability of hot-mix asphalt pavements. Transp. Res. Rec. 2004, 1891, 23–31.spa
dcterms.references. Andres-Valeri, V.C.; Juli-Gandara, L.; Jato-Espino, D.; Rodriguez-Hernandez, J. Characterization of the infiltration capacity of porous concrete pavements with low constant head permeability tests. Water 2018, 10, 480.spa
dcterms.referencesZarandi, M.A.F.; Pillai, K.M.; Barari, B. Flow along and across glass-fiber wicks: Testing of permeability models through experiments and simulations. AIChE J. 2018, 64, 3491–3501.spa
dcterms.referencesAssaad, J.J.; Harb, J. Use of the falling-head method to assess permeability of freshly mixed cementitious-based materials. J. Mater. Civ. Eng. 2013, 25, 580–588.spa
dcterms.referencesSun, Y.; Causse, P.; Benmokrane, B.; Trochu, F. Permeability measurement of granular porous materials by a modified falling-head method. J. Eng. Mech. 2020, 146, 04020101.spa
dcterms.referencesMarshall, T.J. A relation between permeability and size distribution of pores. J. Soil Sci. 1958, 9, 1–8.spa
dcterms.referencesMillington, R.J.; Quirk, J.P. Permeability of porous solids. Trans. Faraday Soc. 1961, 57, 1200–1207.spa
dcterms.referencesGreen, R.E.; Corey, J.C. Calculation of hydraulic conductivity: A further evaluation of some predictive methods. Soil Sci. Soc. Am. J. 1971, 35, 3–8.spa
dcterms.referencesDurner, W. Hydraulic conductivity estimation for soils with heterogeneous pore structure. Water Resour. Res. 1994, 30, 211–223spa
dcterms.referencesArya, L.M.; Leij, F.J.; Shouse, P.J.; Van Genuchten, M.T. Relationship between the hydraulic conductivity function and the particle-size distribution. Soil Sci. Soc. Am. J. 1999, 3, 1063–1070.spa
dcterms.referencesFredlund, M.D.; Wilson, G.W.; Fredlund, D.G. Use of the grain-size distribution for estimation of the soil-water characteristic curve. Can. Geotech. J. 2002, 39, 1103–1117.spa
dcterms.referencesChapuis, R.P. Estimating the in-situ porosity of sandy soils sampled in boreholes. Eng. Geol. 2012, 141, 57–64.spa
dcterms.referencesKlute, A. The determination of the hydraulic conductivity and diffusivity of unsaturated soils. Soil Sci. 1972, 113, 264–276spa
dcterms.referencesBaker, F.G.; Veneman, P.L.; Bouma, J. Limitations of the instantaneous profile method for field measurement of unsaturated hydraulic conductivity. Soil Sci. Soc. Am. J. 1974, 38, 885–888.spa
dcterms.referencesFredlund, D.G.; Xing, A.; Huang, S. Predicting the permeability function for unsaturated soils using the soil-water characteristic curve. Can. Geotech. J. 1994, 31, 533–546.spa
dcterms.referencesDaniel, D.E. State-of-the-art: Laboratory hydraulic conductivity tests for saturated soils. In Hydraulic Conductivity and Waste Contaminant Transport in Soil; Daniel, D.E., Trautwein, S.J., Eds.; ASTM International: West Conshohocken, PA, USA, 1994; pp. 111–168spa
dcterms.references. Cui, Y.J.; Tang, A.M.; Loiseau, C.; Delage, P. Determining the unsaturated hydraulic conductivity of a compacted sand–bentonite mixture under constant-volume and free-swell conditions. Phys. Chem. Earth Parts A B C 2008, 33, S462–S471.spa
dcterms.referencesmixture under constant-volume and free-swell conditions. Phys. Chem. Earth Parts A B C 2008, 33, S462–S471. [CrossRef] 24. Schindler, U.; Durner, W.; von Unold, G.; Müller, L. Evaporation method for measuring unsaturated hydraulic properties of soils: Extending the measurement range. Soil Sci. Soc. Am. J. 2010, 74, 1071–1083.spa
dcterms.referencesTao, G.; Zhu, X.; Cai, J.; Xiao, H.; Chen, Q.; Chen, Y. A fractal approach for predicting unsaturated hydraulic conductivity of deformable clay. Geofluids 2019, 2019, 8013851.spa
dcterms.referencesPilon, J. Characterization of the Physical and Hydraulic Properties of Peat Impacted by a Temporary Access Road. Master’s Thesis, University of Waterloo, Waterloo, ON, Canada, 2015.spa
dcterms.referencesWanger, M.M.; Fox, G.A.; Wilson, G.V. Pipeflow experiments to quantify pore-water pressure buildup due to pipe clogging. In Proceedings of the 2015 ASABE Annual International Meeting, New Orleans, LA, USA, 26–29 July 2015; p. 1.spa
dcterms.referencesRobinson, D.A.; Jones, S.B.; Lebron, I.; Reinsch, S.; Domínguez, M.T.; Smith, A.R.; Jones, D.L.; Marshall, M.R.; Emmett, B.A. Experimental evidence for drought induced alternative stable states of soil moisture. Sci. Rep. 2016, 6, 20018.spa
dcterms.referencesFontanet, M.; Scudiero, E.; Skaggs, T.H.; Fernandez-Garcia, D.; Ferrer, F.; Rodrigo, G.; Bellvert, J. Dynamic management zones for irrigation scheduling. Agric. Water Manag. 2020, 238, 106207.spa
dcterms.references. Jackisch, C.; Germer, K.; Graeff, T.; Andrä, I.; Schulz, K.; Schiedung, M.; Haller-Jans, J.; Schneider, J.; Jaquemotte, J.; Helmer, P.; et al. Soil moisture and matric potential–an open field comparison of sensor systems. Earth Syst. Sci. Data 2020, 12, 683–697.spa
dcterms.referencesWooding, R.A. Steady infiltration from a shallow circular pond. Water Resour. Res. 1968, 4, 1259–1273.spa
dcterms.referencesSmettem, K.R.J.; Clothier, B.E. Measuring unsaturated sorptivity and hydraulic conductivity using multiple disc permeameters. J. Soil Sci. 1989, 40, 563–568.spa
dcterms.referencesReynolds, W.D.; Elrick, D.E. Determination of hydraulic conductivity using a tension infiltrometer. Soil Sci. Soc. Am. J. 1991, 55, 633–639.spa
dcterms.referencesŠim ˚unek, J.; van Genuchten, M.T.; Gribb, M.M.; Hopmans, J.W. Parameter estimation of unsaturated soil hydraulic properties from transient flow processes. Soil Tillage Res. 1998, 47, 27–36.spa
dcterms.referencesVandervaere, J.P.; Vauclin, M.; Elrick, D.E. Transient flow from tension infiltrometers II. Four methods to determine sorptivity and conductivity. Soil Sci. Soc. Am. J. 2000, 64, 1272–1284.spa
dcterms.referencesZhang, R. Infiltration models for the disk infiltrometer. Soil Sci. Soc. Am. J. 1997, 61, 1597–1603.spa
dcterms.referencesSchacht, K.; Marschner, B. Treated wastewater irrigation effects on soil hydraulic conductivity and aggregate stability of loamy soils in Israel. J. Hydrol. Hydromech. 2015, 63, 47–54spa
dcterms.referencesGadi, V.K.; Tang, Y.R.; Das, A.; Monga, C.; Garg, A.; Berretta, C.; Sahoo, L. Spatial and temporal variation of hydraulic conductivity and vegetation growth in green infrastructures using infiltrometer and visual technique. Catena 2017, 155, 20–29.spa
dcterms.referencesWarrick, A.W. Models for disc infiltrometers. Water Resour. Res. 1992, 28, 1319–1327.spa
dcterms.referencesHaverkamp, R.; Ross, P.J.; Smettem, K.R.J.; Parlange, J.Y. Three-dimensional analysis of infiltration from the disc infiltrometer: 2. Physically based infiltration equation. Water Resour. Res. 1994, 30, 2931–2935.spa
dcterms.referencesPalomino, A.; Kim, S.; Summit, A.; Frata, D. Impact of diatoms on fabric and chemical stability of diatom-kaolin mixtures. Appl. Clay Sci. 2011, 51, 287spa
dcterms.referencesFlower, R. Diatomites: Their formation, distribution, and uses. Earth Syst. Environ. Sci. 2013, 2, 501.spa
dcterms.referencesZuluaga, D.A.; Sabogal, D.; Buenaventura, C.A.; Slebi, C.J. Physical and mechanical behavior of fine soil according to the content of multispecies diatoms. J. Phys. Conf. Ser. 2021, 2118, 012011.spa
dcterms.referencesKrumbein, W.C. Measurement and geological significance of shape and roundness of sedimentary particles. J. Sediment. Res. 1941, 11, 64–72spa
dcterms.referencesOlarte, M.C.; Ruge, J.C.; Rocha de Albuquerque, P.J. Influence of the inclusion of synthetic compounds on the plasticity of kaolinitic clays. Arab. J. Geosci. 2021, 14, 1581.spa
dcterms.referencesDIN 19683-9; Physical Laboratory Investigation, Determination of the Permeability (Hydraulic Conductivity) in Saturated Soil Sample Rings. Beuth Verlag GmbH: Berlin, Germany, 1998.spa
dcterms.referencesDIN 18130; Foundation Ground: Investigation of Soil Samples; Determination of the Hydraulic Conductivity—Part 1. Beuth Verlag GmbH: Berlin, Germany, 1998.spa
dcterms.referencesKlute, A.; Dirksen, C. Hydraulic conductivity and diffusivity: Laboratory methods. Methods Soil Anal. Part 1 Phys. Miner. Methods 1986, 5, 687–734.spa
dcterms.referencesDirksen, C. Soil Physics Measurements; Catena Verlag: Reiskirchen, Germany, 1999.spa
dcterms.referencesZhang, R. Determination of soil sorptivity and hydraulic conductivity from the disk infiltrometer. Soil Sci. Soc. Am. J. 1997, 61, 1024–1030.spa
dcterms.referencesCarsel, R.F.; Parrish, R.S. Developing joint probability distributions of soil water retention characteristics. Water Resour. Res. 1988, 24, 755–769.spa
dcterms.referencesDane, J.H.; Topp, G.C. Methods of Soil Analysis Part 4—Physical Methods; Soil Science Society of America: Madison, WI, USA, 2002. 53. Terzaghi, K.; Peck, R.B. Soil Mechanics in Engineering Practice, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1948.spa
dcterms.referencesLambe, T.W.; Lambe, R.V. Soil Mechanics; John Wiley & Sons: New York, NY, USA; MIT: Cambridge, MA, USA, 1991spa
dcterms.references. Kenney, T.C.; Lau, D.; Ofoegbu, G.I. Permeability of compacted granular materials. Can. Geotech. J. 1984, 21, 726–729.spa
dcterms.references. Ahmed, A.; Hossain, S. Field Determination of Unsaturated Permeability and Flow Properties through Subgrade Instrumentation. Geosciences 2022, 12, 95.spa
dcterms.referencesFattah, M.; Mahmood, A.; Nawar, A. Prediction of Coefficient of Permeability of Unsaturated Soil. J. Eng. 2014, 20, 33–48.spa
dcterms.referencesKai, L.; Xu, L.; Stroeven, P.; Shi, C. Water permeability of unsaturated cementitious materials: A review. Constr. Build. Mater. 2021, 302, 124168.spa
dcterms.referencesMualem, Y. Anisotropy of unsaturated soils. Soil Sci. Soc. Am. J. 1984, 48, 505–509.spa
dcterms.referencesDabney, S.M.; Selim, H.M. Anisotropy of a fragipan soil: Vertical vs. horizontal hydraulic conductivity. Soil Sci. Soc. Am. J. 1987, 51, 3–6.spa
dcterms.referencesBronswijk, J.J.B. Shrinkage geometry of a heavy clay soil at various stresses. Soil Sci. Soc. Am. J. 1990, 54, 1500–1502.spa
dcterms.referencesPagliai, M.; Vignozzi, N.; Pellegrini, S. Soil Structure and the effect of management practices. Soil Tillage Res. 2004, 79, 131–143.spa
dcterms.referencesDörner, J.; Horn, R. Anisotropy of pore functions in structured Stagnic Luvisols in the Weichselian moraine region in N. Germany. J. Plant Nutr. Soil Sci. 2006, 169, 213–220.spa
dcterms.referencesPeng, X.; Horn, R. Anisotropic shrinkage and swelling of some organic and inorganic soils. Eur. J. Soil Sci. 2007, 58, 98–107.spa
dcterms.referencesPeng, X.; Horn, R. Time-dependent, anisotropic pore structure and soil strength in a 10-year period after intensive tractor wheeling under conservation and conventional tillage. J. Plant Nutr. Soil Sci. 2008, 171, 936–944.spa
dcterms.referencesZhou, C.; Chen, R. Modelling the water retention behaviour of anisotropic soils. J. Hydrol. 2021, 599, 126361.spa
dcterms.referencesGutierrez, H.; de la Vara, R. Analisis y Diseño de Experimentos, 3rd ed.; McGrawHill: Mexico City, Mexico, 2012.spa
dcterms.referencesNazari, S.; Hassanlourad, E.; Chavoshi, E.; Mirzaii, A. Experimental Investigation of Unsaturated Silt-Sand Soil Permeability. Adv. Civ. Eng. 2018, 2018, 4946956.spa
dcterms.referencesGalvis-Velasco, L.C.; Ruge, J.C.; Galvis-Salamanca, L.C.; Pulgarín-Morales, L.; Bastidas-Martínez, J.G.; Olarte, M.C. Permeability measurement in porous media under unsaturated paths. Dyna 2021, 88, 123–130.spa
dc.contributor.corporatenameApplied Sciencesspa
dc.identifier.doihttps://doi.org/10.3390/app12189058
dc.publisher.placeSuizaspa
dc.relation.citationeditionvol. 12 No° 18 [2022]spa
dc.relation.citationendpage13spa
dc.relation.citationissue18[2022]spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume12spa
dc.relation.cites: Rojas, J.P.; Ruge, J.C.; Carrillo, G.A. Unsaturated Hydraulic Conductivity in Composite Porous Media. Appl. Sci. 2022, 12, 9058. https://doi.org/10.3390/ app12189058
dc.relation.ispartofjournalApplied Sciencesspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalunsaturated hydraulic conductivityeng
dc.subject.proposalpermeabilityeng
dc.subject.proposalsuctioneng
dc.subject.proposaldiatomaceous soilseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

© 2022 by the authors.
Excepto si se señala otra cosa, la licencia del ítem se describe como © 2022 by the authors.