Mostrar el registro sencillo del ítem
Unsaturated Hydraulic Conductivity in Composite Porous Media
dc.contributor.author | Piero Rojas, Jhan | |
dc.contributor.author | Ruge, Juan Carlos | |
dc.contributor.author | Carrillo, Gustavo Adolfo | |
dc.date.accessioned | 2022-11-17T21:02:07Z | |
dc.date.available | 2022-11-17T21:02:07Z | |
dc.date.issued | 2022-09-09 | |
dc.identifier.uri | https://repositorio.ufps.edu.co/handle/ufps/6524 | |
dc.description.abstract | Determining the constitutive properties that describe the incipient hydraulic behavior of the materials, including the matrix domains and the distribution of macro and micropores, is crucial to analyzing the preferential water flow in saturated soils, ks, and unsaturated, ku. This study focused on determining the hydraulic conductivity in porous media under total and partial saturation conditions. The infiltration characteristics of three reconstituted soils were evaluated using five suction ranges employing conventional permeameters, an automated dual system, and mini-disk infiltrometers. The experimental cycles were carried out in granular soils with mixtures of diatomaceous soils, iron oxide (Fe2O3 ), and calcium carbonate (CaCO3 ) in 5–40% proportions. The differences between the granular microstructures of each material and the different hydraulic interaction mechanisms (suctione levels) significantly affected the values of ks and ku and the coupling between the pore domains and the defined water regime. Additionally, a lower impact was observed in the data set exposed to higher percentages of Fe2O3 and CaCO3 in different suction ranges, mainly due to a tension effect (meniscus) generated by suction in the granular skeleton. Since both parameters are mutually correlated and have a similar impact between methods and soil cores, ks and ku must be optimized simultaneously in each mechanism analyzed. The main findings of this work result in the confirmation that the unsaturated permeability decreases as suction is imposed on the sample. As well as the addition of different materials with Particle Size Distribution finer than the base sample, it also reveals a reduction in hydraulic conductivity, both saturated and unsaturated. | eng |
dc.format.extent | 13 | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Applied Sciences | spa |
dc.relation.ispartof | Applied Sciences | |
dc.rights | © 2022 by the authors. | eng |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | spa |
dc.source | https://www.scopus.com/record/display.uri?eid=2-s2.0-85138602423&doi=10.3390%2fapp12189058&origin=inward&txGid=9897a8a8302b67f7fb75c898285ccb97 | spa |
dc.title | Unsaturated Hydraulic Conductivity in Composite Porous Media | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Durner, W.; Flühler, H. Soil Hydraulic Properties. In Encyclopedia of Hydrological Sciences; Wiley Online Library: Hoboken, NJ, USA, 2006; Volume HS077, pp. 1–32. | spa |
dcterms.references | Hunt, A.G.; Ghanbarian, B.; Saville, K.C. Unsaturated hydraulic conductivity modeling for porous media with two fractal regimes. Geoderma 2013, 207, 268–278. | spa |
dcterms.references | Brooks, R.; Corey, A. Hydraulic properties of porous media. In Hydrology Papers 3; Colorado State University: Fort Collins, CO, USA, 1964; pp. 1–27. | spa |
dcterms.references | van Genuchten, M. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 8, 892–898. | spa |
dcterms.references | Fredlund, D.G.; Xing, A. Equations for the soil-water characteristic curve. Can. Geotech. J. 1994, 31, 512–532. | spa |
dcterms.references | Gallage, C.; Kodikara, J.; Uchimura, T. Laboratory measurement of hydraulic conductivity functions of two unsaturated sandy soils during drying and wetting processes. Soils Found. 2013, 53, 417–430 | spa |
dcterms.references | Hall, K.D. Comparison of falling-head and constant-head techniques: Estimating field permeability of hot-mix asphalt pavements. Transp. Res. Rec. 2004, 1891, 23–31. | spa |
dcterms.references | . Andres-Valeri, V.C.; Juli-Gandara, L.; Jato-Espino, D.; Rodriguez-Hernandez, J. Characterization of the infiltration capacity of porous concrete pavements with low constant head permeability tests. Water 2018, 10, 480. | spa |
dcterms.references | Zarandi, M.A.F.; Pillai, K.M.; Barari, B. Flow along and across glass-fiber wicks: Testing of permeability models through experiments and simulations. AIChE J. 2018, 64, 3491–3501. | spa |
dcterms.references | Assaad, J.J.; Harb, J. Use of the falling-head method to assess permeability of freshly mixed cementitious-based materials. J. Mater. Civ. Eng. 2013, 25, 580–588. | spa |
dcterms.references | Sun, Y.; Causse, P.; Benmokrane, B.; Trochu, F. Permeability measurement of granular porous materials by a modified falling-head method. J. Eng. Mech. 2020, 146, 04020101. | spa |
dcterms.references | Marshall, T.J. A relation between permeability and size distribution of pores. J. Soil Sci. 1958, 9, 1–8. | spa |
dcterms.references | Millington, R.J.; Quirk, J.P. Permeability of porous solids. Trans. Faraday Soc. 1961, 57, 1200–1207. | spa |
dcterms.references | Green, R.E.; Corey, J.C. Calculation of hydraulic conductivity: A further evaluation of some predictive methods. Soil Sci. Soc. Am. J. 1971, 35, 3–8. | spa |
dcterms.references | Durner, W. Hydraulic conductivity estimation for soils with heterogeneous pore structure. Water Resour. Res. 1994, 30, 211–223 | spa |
dcterms.references | Arya, L.M.; Leij, F.J.; Shouse, P.J.; Van Genuchten, M.T. Relationship between the hydraulic conductivity function and the particle-size distribution. Soil Sci. Soc. Am. J. 1999, 3, 1063–1070. | spa |
dcterms.references | Fredlund, M.D.; Wilson, G.W.; Fredlund, D.G. Use of the grain-size distribution for estimation of the soil-water characteristic curve. Can. Geotech. J. 2002, 39, 1103–1117. | spa |
dcterms.references | Chapuis, R.P. Estimating the in-situ porosity of sandy soils sampled in boreholes. Eng. Geol. 2012, 141, 57–64. | spa |
dcterms.references | Klute, A. The determination of the hydraulic conductivity and diffusivity of unsaturated soils. Soil Sci. 1972, 113, 264–276 | spa |
dcterms.references | Baker, F.G.; Veneman, P.L.; Bouma, J. Limitations of the instantaneous profile method for field measurement of unsaturated hydraulic conductivity. Soil Sci. Soc. Am. J. 1974, 38, 885–888. | spa |
dcterms.references | Fredlund, D.G.; Xing, A.; Huang, S. Predicting the permeability function for unsaturated soils using the soil-water characteristic curve. Can. Geotech. J. 1994, 31, 533–546. | spa |
dcterms.references | Daniel, D.E. State-of-the-art: Laboratory hydraulic conductivity tests for saturated soils. In Hydraulic Conductivity and Waste Contaminant Transport in Soil; Daniel, D.E., Trautwein, S.J., Eds.; ASTM International: West Conshohocken, PA, USA, 1994; pp. 111–168 | spa |
dcterms.references | . Cui, Y.J.; Tang, A.M.; Loiseau, C.; Delage, P. Determining the unsaturated hydraulic conductivity of a compacted sand–bentonite mixture under constant-volume and free-swell conditions. Phys. Chem. Earth Parts A B C 2008, 33, S462–S471. | spa |
dcterms.references | mixture under constant-volume and free-swell conditions. Phys. Chem. Earth Parts A B C 2008, 33, S462–S471. [CrossRef] 24. Schindler, U.; Durner, W.; von Unold, G.; Müller, L. Evaporation method for measuring unsaturated hydraulic properties of soils: Extending the measurement range. Soil Sci. Soc. Am. J. 2010, 74, 1071–1083. | spa |
dcterms.references | Tao, G.; Zhu, X.; Cai, J.; Xiao, H.; Chen, Q.; Chen, Y. A fractal approach for predicting unsaturated hydraulic conductivity of deformable clay. Geofluids 2019, 2019, 8013851. | spa |
dcterms.references | Pilon, J. Characterization of the Physical and Hydraulic Properties of Peat Impacted by a Temporary Access Road. Master’s Thesis, University of Waterloo, Waterloo, ON, Canada, 2015. | spa |
dcterms.references | Wanger, M.M.; Fox, G.A.; Wilson, G.V. Pipeflow experiments to quantify pore-water pressure buildup due to pipe clogging. In Proceedings of the 2015 ASABE Annual International Meeting, New Orleans, LA, USA, 26–29 July 2015; p. 1. | spa |
dcterms.references | Robinson, D.A.; Jones, S.B.; Lebron, I.; Reinsch, S.; Domínguez, M.T.; Smith, A.R.; Jones, D.L.; Marshall, M.R.; Emmett, B.A. Experimental evidence for drought induced alternative stable states of soil moisture. Sci. Rep. 2016, 6, 20018. | spa |
dcterms.references | Fontanet, M.; Scudiero, E.; Skaggs, T.H.; Fernandez-Garcia, D.; Ferrer, F.; Rodrigo, G.; Bellvert, J. Dynamic management zones for irrigation scheduling. Agric. Water Manag. 2020, 238, 106207. | spa |
dcterms.references | . Jackisch, C.; Germer, K.; Graeff, T.; Andrä, I.; Schulz, K.; Schiedung, M.; Haller-Jans, J.; Schneider, J.; Jaquemotte, J.; Helmer, P.; et al. Soil moisture and matric potential–an open field comparison of sensor systems. Earth Syst. Sci. Data 2020, 12, 683–697. | spa |
dcterms.references | Wooding, R.A. Steady infiltration from a shallow circular pond. Water Resour. Res. 1968, 4, 1259–1273. | spa |
dcterms.references | Smettem, K.R.J.; Clothier, B.E. Measuring unsaturated sorptivity and hydraulic conductivity using multiple disc permeameters. J. Soil Sci. 1989, 40, 563–568. | spa |
dcterms.references | Reynolds, W.D.; Elrick, D.E. Determination of hydraulic conductivity using a tension infiltrometer. Soil Sci. Soc. Am. J. 1991, 55, 633–639. | spa |
dcterms.references | Šim ˚unek, J.; van Genuchten, M.T.; Gribb, M.M.; Hopmans, J.W. Parameter estimation of unsaturated soil hydraulic properties from transient flow processes. Soil Tillage Res. 1998, 47, 27–36. | spa |
dcterms.references | Vandervaere, J.P.; Vauclin, M.; Elrick, D.E. Transient flow from tension infiltrometers II. Four methods to determine sorptivity and conductivity. Soil Sci. Soc. Am. J. 2000, 64, 1272–1284. | spa |
dcterms.references | Zhang, R. Infiltration models for the disk infiltrometer. Soil Sci. Soc. Am. J. 1997, 61, 1597–1603. | spa |
dcterms.references | Schacht, K.; Marschner, B. Treated wastewater irrigation effects on soil hydraulic conductivity and aggregate stability of loamy soils in Israel. J. Hydrol. Hydromech. 2015, 63, 47–54 | spa |
dcterms.references | Gadi, V.K.; Tang, Y.R.; Das, A.; Monga, C.; Garg, A.; Berretta, C.; Sahoo, L. Spatial and temporal variation of hydraulic conductivity and vegetation growth in green infrastructures using infiltrometer and visual technique. Catena 2017, 155, 20–29. | spa |
dcterms.references | Warrick, A.W. Models for disc infiltrometers. Water Resour. Res. 1992, 28, 1319–1327. | spa |
dcterms.references | Haverkamp, R.; Ross, P.J.; Smettem, K.R.J.; Parlange, J.Y. Three-dimensional analysis of infiltration from the disc infiltrometer: 2. Physically based infiltration equation. Water Resour. Res. 1994, 30, 2931–2935. | spa |
dcterms.references | Palomino, A.; Kim, S.; Summit, A.; Frata, D. Impact of diatoms on fabric and chemical stability of diatom-kaolin mixtures. Appl. Clay Sci. 2011, 51, 287 | spa |
dcterms.references | Flower, R. Diatomites: Their formation, distribution, and uses. Earth Syst. Environ. Sci. 2013, 2, 501. | spa |
dcterms.references | Zuluaga, D.A.; Sabogal, D.; Buenaventura, C.A.; Slebi, C.J. Physical and mechanical behavior of fine soil according to the content of multispecies diatoms. J. Phys. Conf. Ser. 2021, 2118, 012011. | spa |
dcterms.references | Krumbein, W.C. Measurement and geological significance of shape and roundness of sedimentary particles. J. Sediment. Res. 1941, 11, 64–72 | spa |
dcterms.references | Olarte, M.C.; Ruge, J.C.; Rocha de Albuquerque, P.J. Influence of the inclusion of synthetic compounds on the plasticity of kaolinitic clays. Arab. J. Geosci. 2021, 14, 1581. | spa |
dcterms.references | DIN 19683-9; Physical Laboratory Investigation, Determination of the Permeability (Hydraulic Conductivity) in Saturated Soil Sample Rings. Beuth Verlag GmbH: Berlin, Germany, 1998. | spa |
dcterms.references | DIN 18130; Foundation Ground: Investigation of Soil Samples; Determination of the Hydraulic Conductivity—Part 1. Beuth Verlag GmbH: Berlin, Germany, 1998. | spa |
dcterms.references | Klute, A.; Dirksen, C. Hydraulic conductivity and diffusivity: Laboratory methods. Methods Soil Anal. Part 1 Phys. Miner. Methods 1986, 5, 687–734. | spa |
dcterms.references | Dirksen, C. Soil Physics Measurements; Catena Verlag: Reiskirchen, Germany, 1999. | spa |
dcterms.references | Zhang, R. Determination of soil sorptivity and hydraulic conductivity from the disk infiltrometer. Soil Sci. Soc. Am. J. 1997, 61, 1024–1030. | spa |
dcterms.references | Carsel, R.F.; Parrish, R.S. Developing joint probability distributions of soil water retention characteristics. Water Resour. Res. 1988, 24, 755–769. | spa |
dcterms.references | Dane, J.H.; Topp, G.C. Methods of Soil Analysis Part 4—Physical Methods; Soil Science Society of America: Madison, WI, USA, 2002. 53. Terzaghi, K.; Peck, R.B. Soil Mechanics in Engineering Practice, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1948. | spa |
dcterms.references | Lambe, T.W.; Lambe, R.V. Soil Mechanics; John Wiley & Sons: New York, NY, USA; MIT: Cambridge, MA, USA, 1991 | spa |
dcterms.references | . Kenney, T.C.; Lau, D.; Ofoegbu, G.I. Permeability of compacted granular materials. Can. Geotech. J. 1984, 21, 726–729. | spa |
dcterms.references | . Ahmed, A.; Hossain, S. Field Determination of Unsaturated Permeability and Flow Properties through Subgrade Instrumentation. Geosciences 2022, 12, 95. | spa |
dcterms.references | Fattah, M.; Mahmood, A.; Nawar, A. Prediction of Coefficient of Permeability of Unsaturated Soil. J. Eng. 2014, 20, 33–48. | spa |
dcterms.references | Kai, L.; Xu, L.; Stroeven, P.; Shi, C. Water permeability of unsaturated cementitious materials: A review. Constr. Build. Mater. 2021, 302, 124168. | spa |
dcterms.references | Mualem, Y. Anisotropy of unsaturated soils. Soil Sci. Soc. Am. J. 1984, 48, 505–509. | spa |
dcterms.references | Dabney, S.M.; Selim, H.M. Anisotropy of a fragipan soil: Vertical vs. horizontal hydraulic conductivity. Soil Sci. Soc. Am. J. 1987, 51, 3–6. | spa |
dcterms.references | Bronswijk, J.J.B. Shrinkage geometry of a heavy clay soil at various stresses. Soil Sci. Soc. Am. J. 1990, 54, 1500–1502. | spa |
dcterms.references | Pagliai, M.; Vignozzi, N.; Pellegrini, S. Soil Structure and the effect of management practices. Soil Tillage Res. 2004, 79, 131–143. | spa |
dcterms.references | Dörner, J.; Horn, R. Anisotropy of pore functions in structured Stagnic Luvisols in the Weichselian moraine region in N. Germany. J. Plant Nutr. Soil Sci. 2006, 169, 213–220. | spa |
dcterms.references | Peng, X.; Horn, R. Anisotropic shrinkage and swelling of some organic and inorganic soils. Eur. J. Soil Sci. 2007, 58, 98–107. | spa |
dcterms.references | Peng, X.; Horn, R. Time-dependent, anisotropic pore structure and soil strength in a 10-year period after intensive tractor wheeling under conservation and conventional tillage. J. Plant Nutr. Soil Sci. 2008, 171, 936–944. | spa |
dcterms.references | Zhou, C.; Chen, R. Modelling the water retention behaviour of anisotropic soils. J. Hydrol. 2021, 599, 126361. | spa |
dcterms.references | Gutierrez, H.; de la Vara, R. Analisis y Diseño de Experimentos, 3rd ed.; McGrawHill: Mexico City, Mexico, 2012. | spa |
dcterms.references | Nazari, S.; Hassanlourad, E.; Chavoshi, E.; Mirzaii, A. Experimental Investigation of Unsaturated Silt-Sand Soil Permeability. Adv. Civ. Eng. 2018, 2018, 4946956. | spa |
dcterms.references | Galvis-Velasco, L.C.; Ruge, J.C.; Galvis-Salamanca, L.C.; Pulgarín-Morales, L.; Bastidas-Martínez, J.G.; Olarte, M.C. Permeability measurement in porous media under unsaturated paths. Dyna 2021, 88, 123–130. | spa |
dc.contributor.corporatename | Applied Sciences | spa |
dc.identifier.doi | https://doi.org/10.3390/app12189058 | |
dc.publisher.place | Suiza | spa |
dc.relation.citationedition | vol. 12 No° 18 [2022] | spa |
dc.relation.citationendpage | 13 | spa |
dc.relation.citationissue | 18[2022] | spa |
dc.relation.citationstartpage | 1 | spa |
dc.relation.citationvolume | 12 | spa |
dc.relation.cites | : Rojas, J.P.; Ruge, J.C.; Carrillo, G.A. Unsaturated Hydraulic Conductivity in Composite Porous Media. Appl. Sci. 2022, 12, 9058. https://doi.org/10.3390/ app12189058 | |
dc.relation.ispartofjournal | Applied Sciences | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.subject.proposal | unsaturated hydraulic conductivity | eng |
dc.subject.proposal | permeability | eng |
dc.subject.proposal | suction | eng |
dc.subject.proposal | diatomaceous soils | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |