Mostrar el registro sencillo del ítem

dc.contributor.authorGarcía-Martinez, Janet
dc.contributor.authorQuintero, viviana
dc.contributor.authorContreras Ropero, Jefferson Eduardo
dc.contributor.authorBarajas Solano, andres F
dc.contributor.authorBarajas, Crisostomo
dc.contributor.authorLavecchia, Roberto
dc.contributor.authorZUORRO, Antonio
dc.date.accessioned2021-10-30T20:38:49Z
dc.date.available2021-10-30T20:38:49Z
dc.date.issued2019-07-24
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/521
dc.description.abstractThis study investigates distillery wastewater, commonly known as vinasse, as a potential culture medium for the production of Chlorella vulgaris and its most relevant metabolites. The effect of vinasse concentration on the composition of the biomass (proteins, carbohydrates, and lipids) was evaluated in treatments performed in 6-L tubular air-lift reactors. The reactors were operated at 25 ◦C for 18 days, in total darkness, under a continuous flow of air. Results showed a rapid growth of microalgae in the first ten days, when an average production of 0.87 g/L was reached. Then, the daily biomass productivity began to decrease, up to an average value of 11.8 g/L at the 16th day. For all treatments, there was a significant reduction in the concentration of most metabolites in the first eight days. This was likely due to the adaptation of the biomass to the new conditions, with a transition from autotrophic to heterotrophic metabolism. From the 10th day, the concentration of metabolites in the biomass began to increase, reaching a nearly constant value at the 16th day. The observed maximum concentrations (%w/w) were: 48.95% proteins, 2.88% xylose, 7.82% glucose, 4.54% arabinose, 8.28% fructose, and 4.82% lipids. These values were only marginally affected by the type of treatment. Overall, the results obtained suggest that vinasse is a promising and sustainable medium for the growth of C. vulgaris and the production of valuable metabolites.eng
dc.format.extent14 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherWaterspa
dc.relation.ispartofWater ISSN: 2073-4441, 2019 vol:11 fasc: 8 págs: 1 - 14, DOI:10.3390/w11081526
dc.rights2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).eng
dc.sourcehttps://www.mdpi.com/2073-4441/11/8/1526spa
dc.titleVinasse as a Sustainable Medium for the Production of Chlorella vulgaris UTEX 1803eng
dc.typeArtículo de revistaspa
dcterms.referencesAslan, S.; Kapdan, I. Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol. Eng. 2006, 28, 64–70.spa
dcterms.referencesBoursier, H.; Béline, F.; Paul, E. Piggery wastewater characterization for biological nitrogen removal process design. Bioresour. Technol. 2005, 96, 351–358.spa
dcterms.referencesOlguin, E.J.; Galicia, S.; Angulo-Guerrero, O.; Hernandez, E. The effect of low light flux and nitrogen deficiency on the chemical composition of Spirulina sp. (Arthrospira) grown on digested pig waste. Bioresour. Technol. 2001, 77, 19–24.spa
dcterms.referencesSheng, A.L.K.; Bilad, M.R.; Osman, N.B.; Arahman, N. Sequencing batch membrane photobioreactor for real secondary effluent polishing using native microalgae: Process performance and full-scale projection. J. Clean. Prod. 2017, 168, 708–715.spa
dcterms.referencesLeme, R.M.; Seabra, J.E.A. Technical-economic assessment of different biogas upgrading routes from vinasse anaerobic digestion in the Brazilian bioethanol industry. Energy 2017, 119, 754–766.spa
dcterms.referencesTapie, W.A.D.; Prato-García, D.; Guerrero, H. Biodegradation of sugarcane vinasses by the white-rot fungi Pleurotus ostreatus in a packed bed reactor. Trop. Subtrop. Agroecosyst. 2016, 19, 145–150.spa
dcterms.referencesHoarau, J.; Caro, Y.; Grondin, I.; Petit, T. Sugarcane vinasse processing: Toward a status shift from waste to valuable resource. A review. Water Proc. Eng. 2018, 24, 11–25.spa
dcterms.referencesIncauca SAS. Informe de sostenibilidad 2016–2017. Available online: https://www.incauca.com/wp-content/ uploads/2018/04/Informe-Sostenibilidad-Incauca-2016-2017.pdf (accessed on 5 April 2019).spa
dcterms.referencesFedebiocombustibles. Cifras Informativas del Sector Biocombustibles. Alcohol Carburante (Etanol Anhidro). Available online: http://www.fedebiocombustibles.com/nota-web-id-487.htm (accessed on 5 April 2019).spa
dcterms.referencesRodrigues Reis, C.E.; Hu, B. Vinasse from sugarcane ethanol production: Better treatment or better utilization? Energy Res. 2017, 1–7.spa
dcterms.referencesSingh, N.K.; Patel, D.B. Microalgae for Bioremediation of Distillery Effluent. In Farming for Food and Water Security; Lichtfouse, E., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 83–109.spa
dcterms.referencesSalgueiro, J.L.; Perez, L.; Maceiras, R.; Sanchez, A.; Cancela, A. Bioremediation of wastewater using Chlorella vulgaris microalgae: Phosphorus and organic matter. Int. J. Environ. Res. 2016, 10, 465–470.spa
dcterms.referencesGonzález, A.; Kafarov, V. Microalgae based biorefinery: Issues to consider. Ciencia Tecnol. Fut. 2011, 4, 5–22.spa
dcterms.referencesOlguin, E.J. Phycoremediation: Key issues for cost-effective nutrient removal processes. Biotechnol. Adv. 2003, 22, 81–91.spa
dcterms.referencesAyala, J.F.; Bravo, B.P. Animal wastes media for Spirulina production. Algol. Stud. 1984, 36, 349–355.spa
dcterms.referencesCosta, R.H.; Medri, W.; Perdomo, C.C. High-rate pond for treatment of piggery wastes. Water Sci. Technol. 2000, 42, 357–362.spa
dcterms.referencesJimenez-Perez, M.V.; Sanchez-Castillo, P.; Romera, O.; Fernandez-Moreno, D.; Perez-Martinez, C. Growth and nutrient removal in free and immobilized planktonic green algae isolated from pig manure. Enzyme Microb. Technol. 2004, 34, 392–398spa
dcterms.referencesBrennan, L.; Owende, P. Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sust. Energ. Rev. 2010, 14, 557–577.spa
dcterms.referencesTravieso, L.; Benitez, F.; Dupeyrón, R. Algae growth potential measurement in distillery wastes. Bull. Environ. Contam. Toxicol. 1999, 62, 483–489spa
dcterms.referencesValderrama, L.; Del Campo, C.; Rodriguez, C.; Bashan, Y.; de-Bashan, L. Treatment of recalcitrant wastewater from ethanol and citric acid production using the microalga Chlorella vulgaris and the macrophyte Lemna minuscula. Water Res. 2002, 36, 4185–4192.spa
dcterms.referencesLiu, J.; Huang, J.; Jiang, Y.; Chen, F. Molasses-based growth and production of oil and astaxanthin by Chlorella zofingiensis. Bioresour. Technol. 2012, 107, 393–398.spa
dcterms.referencesDos Santos, R.R.; Araújo, O.D.Q.F.; de Medeiros, J.L.; Chaloub, R.M. Cultivation of Spirulina maxima in medium supplemented with sugarcane vinasse. Bioresour. Technol. 2016, 204, 38–48.spa
dcterms.referencesSantana, H.; Cereijo, C.R.; Teles, V.C.; Nascimento, R.C.; Fernandes, M.S.; Brunale, P.; Campanha, R.C.; Soares, I.P.; Silva, F.C.P.; Sabaini, P.S.; et al. Microalgae cultivation in sugarcane vinasse: Selection, growth and biochemical characterization. Bioresour. Technol. 2017, 228, 133–140.spa
dcterms.referencesZuorro, A.; Lavecchia, R.; Medici, F.; Piga, L. Use of cell wall degrading enzymes for the production of high-quality functional products from tomato processing waste. Chem. Eng. Trans. 2014, 38, 355–360.spa
dcterms.referencesZuorro, A.; Maffei, G.; Lavecchia, R. Effect of solvent type and extraction conditions on the recovery of phenolic compounds from artichoke waste. Chem. Eng. Trans. 2014, 39, 463–468.spa
dcterms.referencesAndersen, R.A.; Berges, J.A.; Harrison, P.J.; Watanabe, M.M. Appendix A—Recipes for Freshwater and Seawater Media. In Algal Culturing Techniques; Andersen, R.A., Ed.; Elsevier Academic Press: Burlington, MA, USA, 2005; pp. 429–538.spa
dcterms.referencesMoheimani, N.R.; Borowitzka, M.A.; Isdepsky, A.; Sing, S.F. Standard Methods for Measuring Growth of Algae and Their Composition. In Algae for Biofuels and Energy; Borowitzka, M.A., Moheimani, N.R., Eds.; Springer: New York, NY, USA, 2013; pp. 265–284.spa
dcterms.referencesBarajas-Solano, A.; Guzmán-Monsalve, A.; Kafarov, V. Effect of carbon–nitrogen ratio for the biomass production, hydrocarbons and lipids on Botryoccus braunii UIS 003. Chem. Eng. Trans. 2016, 49, 247–252.spa
dcterms.referencesDuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356.spa
dcterms.references. Jerez-Mogollón, S.J.; Rueda-Quiñonez, L.V.; Alfonso-Velazco, L.Y.; Barajas-Solano, A.F.; Barajas-Ferreira, C.; Kafarov, V. Improvement of lab-scale production of microalgal carbohydrates for biofuel production. Ciencia Tecnol. Fut. 2012, 5, 103–116.spa
dcterms.references. Glória, N.A.; Filho, O. Aplicação da vinhaça como fertilizante. Boletin Técnico do PLANALSUCAR 1983, 5, 5–38.spa
dcterms.referencesDoucha, J.; Livansky, K. Production of high-density Chlorella culture grown in fermenters. Appl. Phycol. 2012, 24, 35–43.spa
dcterms.referencesCandido, C.; Lombardi, A.T. Growth of Chlorella vulgaris in treated conventional and biodigested vinasses. J. Appl. Phychol. 2017, 29, 45–53.spa
dcterms.referencesEngin, I.K.; Cekmecelioglu, D.; Yücel, A.M.; Oktem, H.A. Evaluation of heterotrophic and mixotrophic cultivation of novel Micractinium sp. ME05 on vinasse and its scale up for biodiesel production. Bioresour. Technol. 2018, 251, 128–134.spa
dcterms.referencesBumbak, F.; Cook, S.; Zachleder, V.; Hauser, S.; Kovar, K. Best practices in heterotrophic high-cell-density microalgal processes: Achievements, potential and possible limitations. Appl. Microbiol. Biotechnol. 2011, 91, 31–46.spa
dcterms.referencesTravieso, L.; Benítez, F.; Sánchez, E.; Borja, R.; León,M.; Raposo, F.; Rincón, B. Performance of a laboratory-scale microalgae pond for secondary treatment of distillery wastewaters. Chem. Biochem. Eng. 2008, 22, 467–473.spa
dcterms.referencesFlemming, H.C.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 2010, 8, 623–633.spa
dcterms.referencesDe Philippis, R.; Vincenzini,M. Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS. Microbiol. Rev. 1998, 22, 151–175.spa
dcterms.referencesCoca, M.; Barrocal, V.M.; Lucas, S.; González-Benito, G.; García-Cubero, M.T. Protein production in Spirulina platensis biomass using beet vinasse-supplemented culture media. Food Bioprod. Process. 2015, 94, 306–312.spa
dcterms.referencesRodolfi, L.; Zittelli, G.C.; Bassi, N.; Padovani, G.; Biondi, N.; Bonini, G.; Tredici, M.C. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 2009, 102, 100–112spa
dcterms.referencesIllman, A.M.; Scragg, A.H.; Shales, S.W. Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb. Technol. 2000, 27, 631–635.spa
dcterms.referencesDragone, G.; Fernandes, B.; Abreu, A.; Vicente, A.; Teixeira, J. Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Appl. Energy 2011, 88, 3331–3335.spa
dcterms.referencesLing, J.; Nip, S.; Cheok, W.L.; de Toledo, R.A.; Shim, H. Lipid production by a mixed culture of oleaginous yeast and microalga from distillery and domestic mixed wastewater. Bioresour. Technol. 2014, 173, 132–139.spa
dcterms.referencesOlguín, E.J.; Dorantes, E.; Castillo, O.S.; Hernández-Landa, V.J. Anaerobic digestates from vinasse promote growth and lipid enrichment in Neochloris oleoabundans cultures. J. Appl. Phychol. 2015, 27, 1813–1822.spa
dcterms.referencesPérez-García, O.; Escalante, F.; de-Bashan, L.; Bashan, Y. Heterotrophic cultures of microalgae: Metabolism and potential products. Water Res. 2011, 45, 11–36.spa
dcterms.referencesDemirbas, M.F. Biorefineries for biofuel upgrading: A critical review. Appl. Energy 2009, 86, 151–161.spa
dcterms.referencesBhatt, A.K.; Bhatia, R.K.; Thakur, S.; Rana, N.; Sharma, V.; Rathour, R.K. Fuel from waste: A review on scientific solution for waste management and environment conservation. In Prospects of Alternative Transportation Fuels; Singh, A.P., Agarwal, R.A., Agarwal, A.K., Dhar, A., Shukla, M.K., Eds.; Springer: Singapore, 2018; pp. 205–233.spa
dcterms.referencesRoversi, R.; Cumo, F.; D’Angelo, A.; Pennacchia, E.; Piras, G. Feasibility of municipal waste reuse for building envelopes for near zero-energy buildings. WIT Trans. Ecol. Environ. 2017, 224, 115–125.spa
dcterms.referencesDe Santoli, L.; Basso, G.L.; Garcia, D.A.; Piras, G.; Spiridigliozzi, G. Dynamic simulation model of trans-critical carbon dioxide heat pump application for boosting low temperature distribution networks in dwellings. Energies 2019, 12, 484.spa
dcterms.referencesD’Souza, F.M.L.; Kelly, G.J. Effects of a diet of a nitrogen-limited alga (Tetraselmis suecica) on growth, survival and biochemical composition of tiger prawn (Penaeus semisulcatus) larvae. Aquaculture 2000, 181, 311–329.spa
dcterms.referencesChen, F. High cell density culture of microalgae in heterotrophic growth. Trends Biotechnol. 1996, 14, 421–426.spa
dcterms.referencesWhitton, R.; Ometto, F.; Pidou, M.; Jarvis, P.; Villa, R.; Jefferson, B. Microalgae for municipal wastewater nutrient remediation: Mechanisms, reactors and outlook for tertiary treatment. Environ. Technol. Rev. 2015, 4, 133–148.spa
dcterms.referencesChristenson, L.; Sims, R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol. Adv. 2011, 29, 686–702.spa
dcterms.referencesZuorro, A.; Maffei, G.; Lavecchia, R. Reuse potential of artichoke (Cynara scolimus L.) waste for the recovery of phenolic compounds and bioenergy. J. Clean. Prod. 2016, 111, 279–284.spa
dc.identifier.doi10.3390/w11081526
dc.publisher.placeSuizaspa
dc.relation.citationeditionVol. 11, No. 8 (2019)spa
dc.relation.citationendpage14spa
dc.relation.citationissue8 (2019)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume11spa
dc.relation.citesQuintero-Dallos, V., García-Martínez, J. B., Contreras-Ropero, J. E., Barajas-Solano, A. F., Barajas-Ferrerira, C., Lavecchia, R. y Zuorro, A. (2019). Vinasse as a sustainable medium for the production of chlorella vulgaris UTEX 1803. Water, 11(8), 1–14. https://doi.org/10.3390/w11081526
dc.relation.ispartofjournalWaterspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalDistillery wastewatereng
dc.subject.proposalVinasseeng
dc.subject.proposalHeterotrophic cultureseng
dc.subject.proposalBiorefineryeng
dc.subject.proposalChlorella vulgariseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem