Mostrar el registro sencillo del ítem
Towards the production of microalgae biofuels: the effect of the culture medium on lipid deposition
dc.contributor.author | Cuéllar García, Diego Javier | |
dc.contributor.author | Rangel-Basto, Yeily Adriana | |
dc.contributor.author | Barajas Solano, andres F | |
dc.contributor.author | Muñoz-Peñalosa, Yaneth A. | |
dc.contributor.author | Urbina-Suarez, Nestor Andres | |
dc.date.accessioned | 2021-10-30T17:16:26Z | |
dc.date.available | 2021-10-30T17:16:26Z | |
dc.date.issued | 2019-09-26 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/512 | |
dc.description.abstract | Microalgae have been studied in recent years for various reasons, one among them being their potential in the production of biofuels. Biofuels are considered as a renewable source that does not compete with the food industry, and their production results in a reduced environmental footprint. The objective of the present study was to evaluate the different culture conditions that influence the productivity of the microalgae Chlorella vulgaris and Scenedesmus obliquus as a potential source for the production of biodiesel. Bold, Bristol, and modified Algal Assay Procedure (AAP) culture media were evaluated to determine which of them can provide the best conditions that favor biomass production and lipid deposition. The results indicated that S. obliquus cultivated in Bold medium exhibited a higher production of biomass after 30 days (1.730 g/l), while C. vulgaris showed a higher production in the modified AAP medium (1.880 g/l). Although the cultures grown in the AAP medium showed a more significant percentage of biomass comprising lipids than those in the other two media, between the two microalgae, the highest final lipid production was obtained by growing S. obliquus in Bold medium (0.685 g/l, 39.60% of biomass). N, P, Fe, and Mo were the elements added to the growth media, and depending on their concentration in the media, there were differences in the production of lipids. Thus, it can be concluded that S. obliquus cultivated in Bold medium has the highest potential in the production of lipids for biodiesel, but it is necessary to further optimize the cultivation of biomass to obtain a greater quantity of lipids, while interfering as little as possible in its synthesis capacity. | eng |
dc.format.extent | 6 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | BioTechnologia | spa |
dc.relation.ispartof | Biotechnologia ISSN: 0860-7796, 2019 vol:100 fasc: 3 págs: 273 - 278, DOI:10.5114/bta.2019.87578 | |
dc.source | http://www.biotechnologia-journal.org/Towards-the-production-of-microalgae-biofuels-the-effect-of-the-culture-medium-on-lipid-deposition,85,37518,0,1.html | spa |
dc.title | Towards the production of microalgae biofuels: the effect of the culture medium on lipid deposition | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Andersen R.A., Berges K.A., Harrison P.J., Watanabe M.M. (2005) Appendix A – recipes for freshwater and seawater media. [in:] Algal culturing techniques. Ed. Andersen R.A. Academic Press, Boston USA: 429–538. | spa |
dcterms.references | Andersen R.A. (2013) The microalgal cell. [in:] Handbook of microalgal culture: applied phycology and biotechnology Ed. Richmond A., Hu Q. John Wiley & Sons, West Sussex UK: 3–20. | spa |
dcterms.references | APHA (2017) Standard methods for the examination of water and waste water. American Public Health Association, Washington, DC. USA. | spa |
dcterms.references | ASTM (2012) Standard guide for conducting static toxicity tests with microalgae. E1218-04. [in:] Annual Book of ASTM Standards, vol 11.06, West Conshohocken, PA, USA. | spa |
dcterms.references | Battah M., El-Ayoty Y., Abomohra A.E.F., El-Ghany S.A., Esmael A. (2015) Effect of Mn2+ , Co2+ and H2 O2 on biomass and lipids of the green microalga Chlorella vulgaris as a potential candidate for biodiesel production. Ann. Microbiol. 65(1): 155–162. | spa |
dcterms.references | Bohnenberger J.E., Crossetti L.O. (2014) Influence of temperature and nutrient content on lipid production in freshwater microalgae cultures. An. Acad. Brasil. Ciên. 86(3): 1239–1248. | spa |
dcterms.references | Carvalho E.M., Ottonelli F., Ansilago M., Godoy H.C., Nakagaki J.M., Ramires I. (2012) Growth kinetics of the microalga Pseudokirchneriella subcapitata (Korshikov) Hindak (Chlorophyceae) in natural water enriched with NPK fertilizer. Biochem. Biotech. Rep. 1(2): 14–18. | spa |
dcterms.references | Dragone G., Fernandes B.D., Abreu A.P., Vicente A.A., Teixeira J.A. (2011) Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Appl. Energy 88(10): 3331–3335. | spa |
dcterms.references | Esakkimuthu S., Krishnamurthy V., Govindarajan R., Swaminathan K. (2016) Augmentation and starvation of calcium, magnesium, phosphate on lipid production of Scenedesmus obliquus. Biomass Bioenergy 88: 126–134. | spa |
dcterms.references | Fazeli Danesh A., Mooij P., Ebrahimi S., Kleerebezem R., van Loosdrecht M. (2018) Effective role of medium supplementation in microalgal lipid accumulation. Biotech. Bioengin. 115(5): 1152–1160. | spa |
dcterms.references | Ghafari M., Rashidi B., Haznedaroglu B.Z. (2018) Effects of macro and micronutrients on neutral lipid accumulation in oleaginous microalgae. Biofuels 9(2): 147–156. | spa |
dcterms.references | Glass J.B., Wolfe Simon F., Anbar A.D. (2009) Coevolution of metal availability and nitrogen assimilation in cyanobacteria and algae. Geobiology 7(2): 100–123. | spa |
dcterms.references | Guschina I.A., Harwood J.L. (2013) Algal lipids and their metabolism. [in:] Algae for biofuels and energy. Ed. Borowitzka M.A., Moheimani N.R. Springer, Dordrecht: 17–36. | spa |
dcterms.references | Hamed S.M., Zinta G., Klöck G., Asard H., Selim S., AbdElgawad H. (2017) Zinc-induced differential oxidative stress and antioxidant responses in Chlorella sorokiniana and Scenedesmus acuminatus. Ecotoxicol. Environ. Safety 140: 256–263. | spa |
dcterms.references | Juneja A., Ceballos R., Murthy G. (2013) Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies 6(9): 4607–4638. | spa |
dcterms.references | Kiran B., Pathak K., Kumar R., Deshmukh D. (2016) Statistical optimization using central composite design for biomass and lipid productivity of microalga: a step towards enhanced biodiesel production. Ecolog. Eng. 92: 73–81. | spa |
dcterms.references | Lari Z., Moradi-kheibari N., Ahmadzadeh H., Abrishamchi P., Moheimani N.R., Murry M.A. (2016) Bioprocess engineering of microalgae to optimize lipid production through nutrient management. J. Appl. Phycol. 28(6): 3235–3250. | spa |
dcterms.references | Li M., Zhu Q., Hu C.W., Chen L., Liu Z.L., Kong Z.M. (2007) Cobalt and manganese stress in the microalga Pavlova viridis (Prymnesiophyceae): Effects on lipid peroxidation and antioxidant enzymes. J. Environ. Sci. 19(11): 1330–1335. | spa |
dcterms.references | Li Y., Han F., Xu H., Mu J., Chen D., Feng B., Zeng H. (2014) Potential lipid accumulation and growth characteristic of the green alga Chlorella with combination cultivation mode of nitrogen (N) and phosphorus (P). Bioresource Tech. 174: 24–32. | spa |
dcterms.references | Mandal S., Mallick N. (2009) Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl. Microbiol. Biotech. 84(2): 281–291. | spa |
dcterms.references | Mandotra S.K., Kumar P., Suseela M.R., Nayaka S., Ramteke P.W. (2016) Evaluation of fatty acid profile and biodiesel properties of microalga Scenedesmus abundans under the influence of phosphorus, pH and light intensities. Bioresource Tech. 201: 222–229. | spa |
dcterms.references | Milano J., Ong H.C., Masjuki H.H., Chong W.T., Lam M.K., Loh P.K., Vellayan V. (2016) Microalgae biofuels as an alternative to fossil fuel for power generation. Renewable Sustain. Energy Rev. 58: 180–197. | spa |
dcterms.references | Moheimani N.R., Borowitzka M.A., Isdepsky A. (2013) Standard methods for measuring growth of algae and their composition. [in:] Algae for biofuels and energy. Ed. Borowitzka M.A., Moheimani N.R. Springer, Dorcrecht: 265–284). | spa |
dcterms.references | Prasad M.S.V., Varma A.K., Kumari P., Mondal P. (2018) Production of lipid-containing microalgal biomass and simultaneous removal of nitrate and phosphate from synthetic wastewater. Environ. Tech. 39(5): 669–681. | spa |
dcterms.references | Rodríguez Gil J.L., Brain R., Baxter L., Ruffell S., McConkey B., Solomon K., Hanson M. (2014) Optimization of culturing conditions for toxicity testing with the alga Oophila sp. (Chlorophyceae), an amphibian endosymbiont. Environ. Toxicol. Chem. 33(11): 2566–2575. | spa |
dcterms.references | Shin Y.S., Choi H.I., Choi J.W., Lee J.S., Sung Y.J., Sim S.J. (2018) Multilateral approach on enhancing economic viability of lipid production from microalgae: a review. Bioresource Tech. 258: 335–344. | spa |
dcterms.references | Sibi G., Shetty V., Mokashi K. (2016) Enhanced lipid productivity approaches in microalgae as an alternate for fossil fuels – a review. J. Energy Inst. 89(3): 330–334. | spa |
dcterms.references | Zhu L.D., Li Z.H., Hiltunen E. (2016) Strategies for lipid production improvement in microalgae as a biodiesel feedstock. BioMed Res. Int. 2016: 1–8. | spa |
dc.identifier.doi | 10.5114/bta.2019.87578 | |
dc.publisher.place | Polonia | spa |
dc.relation.citationedition | Vol. 100, No. 3 (2019) | spa |
dc.relation.citationendpage | 278 | spa |
dc.relation.citationissue | 3 (2019) | spa |
dc.relation.citationstartpage | 273 | spa |
dc.relation.citationvolume | 100 | spa |
dc.relation.cites | García, D., Rangel-Basto, Y., Barajas-Solano, A., Muñoz-Peñalosa, Y., & Urbina-Suarez, N. (2019). Towards the production of microalgae biofuels: the effect of the culture medium on lipid deposition. BioTechnologia, 100(3), 273-278. https://doi.org/10.5114/bta.2019.87578 | |
dc.relation.ispartofjournal | Biotechnologia | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | spa |
dc.subject.proposal | Biomass production | eng |
dc.subject.proposal | Biodiesel | eng |
dc.subject.proposal | Algae production | eng |
dc.subject.proposal | Chlorella vulgaris | eng |
dc.subject.proposal | Scenedesmus obliquus | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Ambiente y Vida - GIAV [124]