Mostrar el registro sencillo del ítem

dc.contributor.authorAdarme Jaimes, Marco Antonio
dc.contributor.authorJimeno, Miguel
dc.contributor.authorPuerto Cuadros, Eduard Gilberto
dc.date.accessioned2021-10-28T23:55:12Z
dc.date.available2021-10-28T23:55:12Z
dc.date.issued2019-09-25
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/461
dc.description.abstractThere are optimization problems in the Cloud for the selection of web services, due to the large number of services available by different cloud providers and the diversity of quality of service parameters of each of them. This work proposes the adaptation of a pattern recognition model based on the systematic functioning of the brain called Ar2p for the selection of web services in composition activities in Cloud environments. The web serice are represented as patterns to be recognized by Ar2p, which determines the necessary and sufficient web services that constitute the composition of services that meet its functional and non-functional requirements. The services composition and activity selection have been formalized through a logical-mathematical model of web service recognition mechanisms in two steps, one that describes the syntactic search of the service and the second, which offers filtering through quality of service parameters. An adaptive implementation of the final model allows its recognition modules to be provided with any desired optimization strategy.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherJournal of Physics: Conference Seriesspa
dc.relation.ispartofJournal of Physics: Conference Series
dc.rightsContent from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.eng
dc.sourcehttps://iopscience.iop.org/article/10.1088/1742-6596/1513/1/012004/metaspa
dc.titleA recursive pattern recognition approach to selection web services in cloud environmenteng
dc.typeArtículo de revistaspa
dcterms.referencesSheng Q Z, Qiao X, Vasilakos A V, Szabo C, Bourne S and Xu X 2014 Web services composition: A decade’s overview Information Science 280 218spa
dcterms.referencesGoettelmann E, Fdhila W and Godart C 2013 IEEE International Conference on Cloud Engineering (IC2E) (Redwood: IEEE) Partitioning and cloud deployment of composite web services under security constraints in Cloud Engineeringspa
dcterms.referencesGuzmán Luna J A and Ovalle Carranza D A 2008 Composición de servicios: Una aplicación de la web semántica y las técnicas de planificación automática Ingeniería e Investigación 28 145spa
dcterms.referencesWu C-S and Khoury I 2012 Ninth International Conference on Information Technology - New Generations (ITNG) (Las Vegas: IEEE) Tree-based search algorithm for web service composition in SaaSspa
dcterms.referencesGabrel V, Manouvrier M and Murat C 2014 Web services composition: Complexity and models Discrete Applied Mathematics 196 1spa
dcterms.referencesPuerto Cuadros E G and Aguilar Castro J L 2017 Un algoritmo recursivo de reconocimiento de patrones Revista Técnica de la Facultad de Ingenieria Universidad del Zulia 40 95spa
dcterms.referencesJula A, Sundararajan E and Othman Z 2014 Cloud computing service composition: A systematic literature review Expert Systems with Applications 41 3809spa
dcterms.referencesZou G, Gan Y, Chen Y and Zhang B 2014 Dynamic composition of web services using efficient planners in large-scale service repository Knowledge-Based System 62 98spa
dcterms.referencesSundareswaran S, Squicciarini A and Lin D 2012 IEEE 5th International Conference on Cloud Computing (CLOUD 2012) (Honolulu: IEEE) A brokerage-based approach for cloud service selection in Cloud Computingspa
dcterms.referencesGarg S K, Versteeg S and Buyya R 2011 Fourth IEEE International Conference on Utility and Cloud Computing (UCC) (Victoria: IEEE) Smicloud: A framework for comparing and ranking cloud servicesspa
dcterms.referencesCardinale Y and Rukoz M 2011 Proceedings of the International Conference on Management of Emergent Digital Ecosystems (MEDES ’11) (California: Association for Computing Machinery) A framework for reliable execution of transactional composite web servicesspa
dcterms.referencesYu Q, Chen L and Li B 2015 Ant colony optimization applied to web service compositions in cloud computing Computers and Electrical Engineering 41 18spa
dcterms.referencesYe Z, Zhou X and Bouguettaya A 2011 International Conference on Database Systems for Advanced Applications (Berlin: Springer) Genetic algorithm based QoS-aware service compositions in cloud computingspa
dcterms.referencesWang S, Zheng Z, Sun Q, Zou H and Yang F 2011 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) (Shanghai: IEEE) Cloud model for service selectionspa
dcterms.referencesWu Q, Zhang M, Zheng R, Lou Y and Wei W 2013 A QoS-satisfied prediction model for cloud-service composition based on a hidden Markov model Mathematical Problems in Engineering 2013 387083spa
dcterms.referencesWang S, Sun Q, Zou H and Yang F 2013 Particle swarm optimization with skyline operator for fast cloud-based web service composition Mobile Networks and Applications 18 116spa
dcterms.referencesNilsson N J 1996 Introduction to Machine Learning: An Early Draft of a Proposed Textbook (Stanford: Stanford University)spa
dcterms.referencesDuda R O, Hart P E and Stork D G 1997 Pattern Classification (California: Jhon Wiley & Sons)spa
dcterms.referencesChandrashekar G and Sahin F 2014 A survey on feature selection methods Computers and Electrical Engineering 40 16spa
dcterms.referencesKhalid S, Khalil T and Nasreen S 2014 Science and Information Conference (SIC) (London: IEEE) A survey of feature selection and feature extraction techniques in machine learningspa
dcterms.referencesPuerto E and Aguilar J 2016 IEEE Latin American Conference on Computational Intelligence (LA-CCI) (Cartagena: IEEE) Extended abstract: Formal description of a pattern for a recursive process of recognitionspa
dc.identifier.doihttps://doi.org/10.1088/1742-6596/1513/1/012004
dc.publisher.placeInglaterraspa
dc.relation.citationeditionVol.1513 No.1.(2020)spa
dc.relation.citationendpage7spa
dc.relation.citationissue1(2020)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume1513spa
dc.relation.citesAdarme, M. A., Jimeno, M. A., & Puerto, E. G. (2020, March). A recursive pattern recognition approach to selection web services in cloud environment. In Journal of Physics: Conference Series (Vol. 1513, No. 1, p. 012004). IOP Publishing.
dc.relation.ispartofjournalJournal of Physics: Conference Seriesspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem