Show simple item record

dc.contributor.authorGonzález-Delgado, Angel Darío
dc.contributor.authorBarajas Solano, andres F
dc.contributor.authorLeón Pulido, Jeffrey
dc.description.abstractThe African palm is the main source of vegetable oil worldwide, representing about 29.60% of the total oil and fat production around the world. The rapid expansion of this sector has faced several concerns related to environmental and social aspects that have driven the search for sustainable alternatives. In this work, the inherent safety analysis and sustainability evaluation for the crude palm oil production process was performed using the inherent safety index (ISI) method and the sustainable weighted return on investment metric (SWROIM), respectively. The process was designed for a processing capacity of 30 t/h of palm bunches and under North-Colombian conditions. Three technical indicators were considered to evaluate the process sustainability including exergy efficiency, potential environmental impacts output (PEI output), and the total inherent safety index (ITI). The economic factor is directly considered since the SWROIM is an extension of the conventional return on investment (ROI). The resulting ITI at 11 indicated an inherently safe process, and the highest risk was observed for the process equipment safety subindex. The SWROIM reached a higher value (53%) compared to the conventional ROI (49.39%), which suggests positive impacts on sustainability. The novelty of this work lies in detecting the inherent risks and providing a decision making criteria for this project through a complete evaluation that relates economic, energy, environmental, and safety criteria.eng
dc.format.extent13 páginasspa
dc.publisherApplied Sciencesspa
dc.relation.ispartofApplied Sciences (Switzerland) ISSN: 2076-3417, 2021 vol:11 fasc: 1 págs: 1 - 13, DOI:10.3390/app11031046
dc.rights2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// 4.0/).eng
dc.titleEvaluating the Sustainability and Inherent Safety of a Crude Palm Oil Production Process in North-Colombiaeng
dc.typeArtículo de revistaspa
dcterms.referencesRivera-Méndez, Y.D.; Rodríguez, D.T.; Romero, H.M. Carbon footprint of the production of oil palm (Elaeis guineensis) fresh fruit bunches in Colombia. J. Clean. Prod. 2017, 149, 743–
dcterms.referencesFedepalma. Federación Nacional de Cultivadores de aceite palma -Fedepalma Statistical Yearbook 2015. In The Oil Palm Agroindustry in Colombia and the World 2011–2015; Área de Economía- UPSDS: Bogotá, Colombia,
dcterms.referencesFedepalma. La palma de Aceite en Colombia. 2019. Available online: (accessed on 15 September 2020).spa
dcterms.referencesOcampo-Peñuela, N.; Garcia-Ulloa, J.; Ghazoul, J.; Etter, A. Quantifying impacts of oil palm expansion on Colombia’s threatened biodiversity. Biol. Conserv. 2018, 224, 117–
dcterms.referencesCastiblanco, C.; Etter, A.; Ramirez, A. Impacts of oil palm expansion in Colombia: What do socioeconomic indicators show? Land Use Policy 2015, 44, 31–
dcterms.referencesRincón, L.E.; Moncada, J.; Cardona, C.A. Analysis of potential technological schemes for the development of oil palm industry in Colombia: A biorefinery point of view. Ind. Crop. Prod. 2014, 52, 457–
dcterms.referencesUmar, M.S.; Urmee, T.; Jennings, P. A policy framework and industry roadmap model for sustainable oil palm biomass electricity generation in Malaysia. Renew. Energy 2018, 128, 275–
dcterms.referencesMontoya, M.I.; Quintero, J.A.; Sánchez, Ó.J.; Cardona, C.A. Evaluación del impacto ambiental del proceso de obtención de alcohol carburante utilizando el algoritmo de reducción de residuos Environmental impact assessment for ethanol production process using the waste reduction algorithm. Rev. Fac. Ing. Univ. Antioq. 2006, 36, 85–
dcterms.referencesRamirez-Contreras, N.E.; Munar-Florez, D.A.; Garcia-Nuñez, J.A.; Mosquera-Montoya, M.; Faaij, A.P.C. The GHG emissions and economic performance of the Colombian palm oil sector; current status and long-term perspectives. J. Clean. Prod. 2020, 258,
dcterms.referencesGonzález-Delgado, A.D.; Peralta-Ruíz, Y.Y. Environmental Assessment of a Crude Palm Oil Production Process under NorthColombian conditions Using WAR Algorithm. Int. J. ChemTech Res. 2016, 9, 833–
dcterms.referencesMartínez, D.; Puerta, A.; Mestre, R.; Peralta-Ruiz, Y.; Gonzalez-Delgado, A.D. Exergy-based evaluation of crude palm oil production in North-Colombia. Aust. J. Basic Appl. Sci. 2016, 10, 1–
dcterms.referencesGonzález-Delgado, Á.; Peralta-Ruiz, Y. A hierarchical techno-economic sensitivity approach for evaluation of agroindustrial production chains. Int. J. ChemTech Res. 2017, 10, 921–
dcterms.referencesSubramaniam, V.; Hashim, Z.; Loh, S.K.; Astimar, A.A. Assessing water footprint for the oil palm supply chain- a cradle to gate study. Agric. Water Manag. 2020, 237,
dcterms.referencesMoreno-Sader, K.; Alarcón-Suesca, C.; González-Delgado, Á.-D. Application of environmental and hazard assessment methodologies towards the sustainable production of crude palm oil in North-Colombia. Sustain. Chem. Pharm. 2020, 15, 1–
dcterms.referencesAlvarez-Cordero, A.; De Avila-Alvis, Y.; Ortiz-Rincon, M.; González-Delgado, A.; Peralta-Ruiz, Y. Environmental Assessment of Dual Crude Palm and Kernel Oil Production in North-Colombia using WAR Algorithm. J. Eng. Appl. Sci. 2017, 12, 7265–
dcterms.referencesMunasinghe, M.; Jayasinghe, P.; Deraniyagala, Y.; Matlaba, V.J.; dos Santos, J.F.; Maneschy, M.C.; Mota, J.A. Value–Supply Chain Analysis (VSCA) of crude palm oil production in Brazil, focusing on economic, environmental and social sustainability. Sustain. Prod. Consum. 2019, 17, 161–
dcterms.referencesOliveira-Rodrigues, T.; Caldeira-Pires, A.; Luz, S.; Albuquerque-Frate, C. GHG balance of crude palm oil for biodiesel production in the northern region of Brazil. Renew. Energy 2014, 62, 516–
dcterms.referencesHeikkilä, A. Inherent safety in process plant design. VTT Publ. 1999, 384, 1–
dcterms.referencesSanjuan, M.; Tobon, K.; Meramo-Hurtado, S.; Ojeda, K.; Gonzalez, Á. Bioethanol Production Process from Palm Rachis Using the Computer-Assisted Intrinsic Safety Index Method. Int. J. Acad. Eng. Res. 2018, 2, 8–
dcterms.referencesMeramo-Hurtado, S.I.; Ojeda, K.A.; Sanchez-Tuiran, E. Environmental and Safety Assessments of Industrial Production of Levulinic Acid via Acid-Catalyzed Dehydration. ACS Omega 2019, 4, 22302–
dcterms.referencesMeramo-Hurtado, S.I.; Sanchez-Tuiran, E.; Ponce-Ortega, J.M.; El-Halwagi, M.M.; Ojeda-Delgado, K.A. Synthesis and Sustainability Evaluation of a Lignocellulosic Multifeedstock Biorefinery Considering Technical Performance Indicators. ACS Omega 2020, 5, 9259–
dcterms.referencesDenny, K.S.; Wendy, P.Q.; Mei, F.; David, L. Waste Recovery and Regeneration (REGEN) system for palm oil industry. Chem. Eng. Trans. 2015, 45, 1315–
dcterms.referencesOwolarafe, O.K.; Faborode, M.O. Micro-structural characterisation of palm fruit at sterilisation and digestion stages in relation to oil expression. J. Food Eng. 2008, 85, 598–
dcterms.referencesGuillen-Cuevas, K.; Ortiz-Espinoza, A.P.; Ozinan, E.; Jiménez-Gutiérrez, A.; Kazantzis, N.K.; El-Halwagi, M.M. Incorporation of Safety and Sustainability in Conceptual Design via a Return on Investment Metric. ACS Sustain. Chem. Eng. 2018, 6, 1411–
dcterms.referencesEl-Halwagi, M. Chapter 2—Overview of Process Economics. In Sustainable Design through Process Integration; Elsevier: Amsterdam, The Netherlands, 2012; p.
dcterms.referencesHerrera-Rodriguez, T.; Parejo-Palacio, V.; González-Delgado, Á.D. Technoeconomic sensibility analysis of industrial agar production from red algae. Chem. Eng. Trans. 2018, 70, 2029–
dcterms.referencesPeralta-Ruiz, Y.; Saavedra, D.; González-Delgado, A. Exergy based evaluation of large-scale hydrogen production from African palm rachis. Aust. J. Basic Appl. Sci. 2016, 10, 168–
dcterms.referencesAbusoglu, A.; Kanoglu, M. Exergetic and thermoeconomic analyses of diesel engine powered cogeneration: Part 1—Formulations. Appl. Therm. Eng. 2009, 29, 234–
dcterms.referencesRestrepo-serna, D.L.; Anderson, J.; Cardona-alzate, C.A. Energy Efficiency of Biorefinery Schemes Using Sugarcane Bagasse as Raw Material. Energies 2018, 11,
dcterms.referencesMeramo-Hurtado, S.; Urbina-Suarez, N.; González-Delgado, Á. Computer-aided environmental and exergy analyses of a large-scale production of chitosan microbeads modified with TiO2 nanoparticles. J. Clean. Prod. 2019, 273,
dcterms.referencesMeramo-Hurtado, S.I.; Gonzalez-Delgado, A.D.; Rehmann, L.; Quiñones, E.; Mehrvar, M. Comparison of Biobutanol Production Pathways via Acetone−Butanol−Ethanol Fermentation Using a Sustainability Exergy-Based Metric. ACS Omega 2020, in
dcterms.referencesCardenas, Y.; Orozco, I.; González, A.; Kafarov, V. Enviromental Assessment of Microalgae Biosiesel Production in Colombia: Comparison of Three oil Extraction Systems. Latinoam. J. Oil Gas Altern. Energy 2013, 5, 85–
dcterms.referencesMeramo-Hurtado, S.; Alarcón-Suesca, C.; González-Delgado, Á.D. Exergetic sensibility analysis and environmental evaluation of chitosan production from shrimp exoskeleton in Colombia. J. Clean. Prod. 2020, 248,
dcterms.referencesCarvajal, J.C.; Gómez, A.; Cardona, C.A. Comparison of lignin extraction processes: Economic and Environmental assessment. Bioresour. Technol. 2016, 214, 468–
dcterms.referencesMeramo, S.I.; Bonfante, H.; De Avila-Montiel, G.; Herrera-Barros, A. Environmental Assessment of a Large-Scale Production of TiO2 Nanoparticles via Green Chemistry. Chem. Eng. Trans. 2018, 70, 1063–
dcterms.referencesEl-Halwagi, M.M. Sustainable Design through Process Integration: Fundamentals and Applications to Industrial Pollution Prevention, Resource Conservation, and Profitability Enhancement; Butterworth-Heinemann: Oxford, UK, 2012; ISBN
dcterms.referencesDo, T.X.; Lim, Y. Techno-economic comparison of three energy conversion pathways from empty fruit bunches. Renew. Energy 2016, 90, 307–
dcterms.referencesMoreno-Sader, K.; Meramo-Hurtado, S.I.; González-Delgado, A.D. Computer-aided environmental and exergy analysis as decision-making tools for selecting bio-oil feedstocks. Renew. Sustain. Energy Rev. 2019, 112, 42–57spa
dcterms.referencesGozmen ¸Sanli, B.; Uludamar, E.; Özcanli, M. Evaluation of energetic-exergetic and sustainability parameters of biodiesel fuels produced from palm oil and opium poppy oil as alternative fuels in diesel engines. Fuel 2019, 258,
dc.relation.citationeditionVol. 11, No. 1046 (2021)spa
dc.relation.citationissue1046 (2021)spa
dc.relation.citesGonzález-Delgado, A.D.; Barajas-Solano, A.F.; Leon-Pulido, J. Evaluating the Sustainability and Inherent Safety of a Crude Palm Oil Production Process in North-Colombia. Appl. Sci. 2021, 11, 1046. https://doi. org/10.3390/app11031046
dc.relation.ispartofjournalApplied Sciencesspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalExergy efficiencyeng
dc.subject.proposalAfrican palmeng

Files in this item


This item appears in the following Collection(s)

Show simple item record

2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// 4.0/).
Except where otherwise noted, this item's license is described as 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// 4.0/).