Mostrar el registro sencillo del ítem

dc.contributor.authorGonzález-Delgado, Angel Darío
dc.contributor.authorBarajas Solano, andres F
dc.contributor.authorLeón Pulido, Jeffrey
dc.date.accessioned2021-10-17T14:58:56Z
dc.date.available2021-10-17T14:58:56Z
dc.date.issued2021-01-25
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/334
dc.description.abstractThe African palm is the main source of vegetable oil worldwide, representing about 29.60% of the total oil and fat production around the world. The rapid expansion of this sector has faced several concerns related to environmental and social aspects that have driven the search for sustainable alternatives. In this work, the inherent safety analysis and sustainability evaluation for the crude palm oil production process was performed using the inherent safety index (ISI) method and the sustainable weighted return on investment metric (SWROIM), respectively. The process was designed for a processing capacity of 30 t/h of palm bunches and under North-Colombian conditions. Three technical indicators were considered to evaluate the process sustainability including exergy efficiency, potential environmental impacts output (PEI output), and the total inherent safety index (ITI). The economic factor is directly considered since the SWROIM is an extension of the conventional return on investment (ROI). The resulting ITI at 11 indicated an inherently safe process, and the highest risk was observed for the process equipment safety subindex. The SWROIM reached a higher value (53%) compared to the conventional ROI (49.39%), which suggests positive impacts on sustainability. The novelty of this work lies in detecting the inherent risks and providing a decision making criteria for this project through a complete evaluation that relates economic, energy, environmental, and safety criteria.eng
dc.format.extent13 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherApplied Sciencesspa
dc.relation.ispartofApplied Sciences (Switzerland) ISSN: 2076-3417, 2021 vol:11 fasc: 1 págs: 1 - 13, DOI:10.3390/app11031046
dc.rights2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).eng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://www.mdpi.com/2076-3417/11/3/1046spa
dc.titleEvaluating the Sustainability and Inherent Safety of a Crude Palm Oil Production Process in North-Colombiaeng
dc.typeArtículo de revistaspa
dcterms.referencesRivera-Méndez, Y.D.; Rodríguez, D.T.; Romero, H.M. Carbon footprint of the production of oil palm (Elaeis guineensis) fresh fruit bunches in Colombia. J. Clean. Prod. 2017, 149, 743–750.spa
dcterms.referencesFedepalma. Federación Nacional de Cultivadores de aceite palma -Fedepalma Statistical Yearbook 2015. In The Oil Palm Agroindustry in Colombia and the World 2011–2015; Área de Economía- UPSDS: Bogotá, Colombia, 2016.spa
dcterms.referencesFedepalma. La palma de Aceite en Colombia. 2019. Available online: https://web.fedepalma.org/la-palma-de-aceite-encolombia-departamentos (accessed on 15 September 2020).spa
dcterms.referencesOcampo-Peñuela, N.; Garcia-Ulloa, J.; Ghazoul, J.; Etter, A. Quantifying impacts of oil palm expansion on Colombia’s threatened biodiversity. Biol. Conserv. 2018, 224, 117–121.spa
dcterms.referencesCastiblanco, C.; Etter, A.; Ramirez, A. Impacts of oil palm expansion in Colombia: What do socioeconomic indicators show? Land Use Policy 2015, 44, 31–43.spa
dcterms.referencesRincón, L.E.; Moncada, J.; Cardona, C.A. Analysis of potential technological schemes for the development of oil palm industry in Colombia: A biorefinery point of view. Ind. Crop. Prod. 2014, 52, 457–465.spa
dcterms.referencesUmar, M.S.; Urmee, T.; Jennings, P. A policy framework and industry roadmap model for sustainable oil palm biomass electricity generation in Malaysia. Renew. Energy 2018, 128, 275–284.spa
dcterms.referencesMontoya, M.I.; Quintero, J.A.; Sánchez, Ó.J.; Cardona, C.A. Evaluación del impacto ambiental del proceso de obtención de alcohol carburante utilizando el algoritmo de reducción de residuos Environmental impact assessment for ethanol production process using the waste reduction algorithm. Rev. Fac. Ing. Univ. Antioq. 2006, 36, 85–95.spa
dcterms.referencesRamirez-Contreras, N.E.; Munar-Florez, D.A.; Garcia-Nuñez, J.A.; Mosquera-Montoya, M.; Faaij, A.P.C. The GHG emissions and economic performance of the Colombian palm oil sector; current status and long-term perspectives. J. Clean. Prod. 2020, 258, 120757.spa
dcterms.referencesGonzález-Delgado, A.D.; Peralta-Ruíz, Y.Y. Environmental Assessment of a Crude Palm Oil Production Process under NorthColombian conditions Using WAR Algorithm. Int. J. ChemTech Res. 2016, 9, 833–843.spa
dcterms.referencesMartínez, D.; Puerta, A.; Mestre, R.; Peralta-Ruiz, Y.; Gonzalez-Delgado, A.D. Exergy-based evaluation of crude palm oil production in North-Colombia. Aust. J. Basic Appl. Sci. 2016, 10, 1–8.spa
dcterms.referencesGonzález-Delgado, Á.; Peralta-Ruiz, Y. A hierarchical techno-economic sensitivity approach for evaluation of agroindustrial production chains. Int. J. ChemTech Res. 2017, 10, 921–929.spa
dcterms.referencesSubramaniam, V.; Hashim, Z.; Loh, S.K.; Astimar, A.A. Assessing water footprint for the oil palm supply chain- a cradle to gate study. Agric. Water Manag. 2020, 237, 106184.spa
dcterms.referencesMoreno-Sader, K.; Alarcón-Suesca, C.; González-Delgado, Á.-D. Application of environmental and hazard assessment methodologies towards the sustainable production of crude palm oil in North-Colombia. Sustain. Chem. Pharm. 2020, 15, 1–10.spa
dcterms.referencesAlvarez-Cordero, A.; De Avila-Alvis, Y.; Ortiz-Rincon, M.; González-Delgado, A.; Peralta-Ruiz, Y. Environmental Assessment of Dual Crude Palm and Kernel Oil Production in North-Colombia using WAR Algorithm. J. Eng. Appl. Sci. 2017, 12, 7265–7271.spa
dcterms.referencesMunasinghe, M.; Jayasinghe, P.; Deraniyagala, Y.; Matlaba, V.J.; dos Santos, J.F.; Maneschy, M.C.; Mota, J.A. Value–Supply Chain Analysis (VSCA) of crude palm oil production in Brazil, focusing on economic, environmental and social sustainability. Sustain. Prod. Consum. 2019, 17, 161–175.spa
dcterms.referencesOliveira-Rodrigues, T.; Caldeira-Pires, A.; Luz, S.; Albuquerque-Frate, C. GHG balance of crude palm oil for biodiesel production in the northern region of Brazil. Renew. Energy 2014, 62, 516–521.spa
dcterms.referencesHeikkilä, A. Inherent safety in process plant design. VTT Publ. 1999, 384, 1–132.spa
dcterms.referencesSanjuan, M.; Tobon, K.; Meramo-Hurtado, S.; Ojeda, K.; Gonzalez, Á. Bioethanol Production Process from Palm Rachis Using the Computer-Assisted Intrinsic Safety Index Method. Int. J. Acad. Eng. Res. 2018, 2, 8–11.spa
dcterms.referencesMeramo-Hurtado, S.I.; Ojeda, K.A.; Sanchez-Tuiran, E. Environmental and Safety Assessments of Industrial Production of Levulinic Acid via Acid-Catalyzed Dehydration. ACS Omega 2019, 4, 22302–22312.spa
dcterms.referencesMeramo-Hurtado, S.I.; Sanchez-Tuiran, E.; Ponce-Ortega, J.M.; El-Halwagi, M.M.; Ojeda-Delgado, K.A. Synthesis and Sustainability Evaluation of a Lignocellulosic Multifeedstock Biorefinery Considering Technical Performance Indicators. ACS Omega 2020, 5, 9259–9275.spa
dcterms.referencesDenny, K.S.; Wendy, P.Q.; Mei, F.; David, L. Waste Recovery and Regeneration (REGEN) system for palm oil industry. Chem. Eng. Trans. 2015, 45, 1315–1320.spa
dcterms.referencesOwolarafe, O.K.; Faborode, M.O. Micro-structural characterisation of palm fruit at sterilisation and digestion stages in relation to oil expression. J. Food Eng. 2008, 85, 598–605.spa
dcterms.referencesGuillen-Cuevas, K.; Ortiz-Espinoza, A.P.; Ozinan, E.; Jiménez-Gutiérrez, A.; Kazantzis, N.K.; El-Halwagi, M.M. Incorporation of Safety and Sustainability in Conceptual Design via a Return on Investment Metric. ACS Sustain. Chem. Eng. 2018, 6, 1411–1416.spa
dcterms.referencesEl-Halwagi, M. Chapter 2—Overview of Process Economics. In Sustainable Design through Process Integration; Elsevier: Amsterdam, The Netherlands, 2012; p. 1561.spa
dcterms.referencesHerrera-Rodriguez, T.; Parejo-Palacio, V.; González-Delgado, Á.D. Technoeconomic sensibility analysis of industrial agar production from red algae. Chem. Eng. Trans. 2018, 70, 2029–2034.spa
dcterms.referencesPeralta-Ruiz, Y.; Saavedra, D.; González-Delgado, A. Exergy based evaluation of large-scale hydrogen production from African palm rachis. Aust. J. Basic Appl. Sci. 2016, 10, 168–175.spa
dcterms.referencesAbusoglu, A.; Kanoglu, M. Exergetic and thermoeconomic analyses of diesel engine powered cogeneration: Part 1—Formulations. Appl. Therm. Eng. 2009, 29, 234–241.spa
dcterms.referencesRestrepo-serna, D.L.; Anderson, J.; Cardona-alzate, C.A. Energy Efficiency of Biorefinery Schemes Using Sugarcane Bagasse as Raw Material. Energies 2018, 11, 3474.spa
dcterms.referencesMeramo-Hurtado, S.; Urbina-Suarez, N.; González-Delgado, Á. Computer-aided environmental and exergy analyses of a large-scale production of chitosan microbeads modified with TiO2 nanoparticles. J. Clean. Prod. 2019, 273, 117804.spa
dcterms.referencesMeramo-Hurtado, S.I.; Gonzalez-Delgado, A.D.; Rehmann, L.; Quiñones, E.; Mehrvar, M. Comparison of Biobutanol Production Pathways via Acetone−Butanol−Ethanol Fermentation Using a Sustainability Exergy-Based Metric. ACS Omega 2020, in press.spa
dcterms.referencesCardenas, Y.; Orozco, I.; González, A.; Kafarov, V. Enviromental Assessment of Microalgae Biosiesel Production in Colombia: Comparison of Three oil Extraction Systems. Latinoam. J. Oil Gas Altern. Energy 2013, 5, 85–100.spa
dcterms.referencesMeramo-Hurtado, S.; Alarcón-Suesca, C.; González-Delgado, Á.D. Exergetic sensibility analysis and environmental evaluation of chitosan production from shrimp exoskeleton in Colombia. J. Clean. Prod. 2020, 248, 119285.spa
dcterms.referencesCarvajal, J.C.; Gómez, A.; Cardona, C.A. Comparison of lignin extraction processes: Economic and Environmental assessment. Bioresour. Technol. 2016, 214, 468–476.spa
dcterms.referencesMeramo, S.I.; Bonfante, H.; De Avila-Montiel, G.; Herrera-Barros, A. Environmental Assessment of a Large-Scale Production of TiO2 Nanoparticles via Green Chemistry. Chem. Eng. Trans. 2018, 70, 1063–1068.spa
dcterms.referencesEl-Halwagi, M.M. Sustainable Design through Process Integration: Fundamentals and Applications to Industrial Pollution Prevention, Resource Conservation, and Profitability Enhancement; Butterworth-Heinemann: Oxford, UK, 2012; ISBN 9781856177443.spa
dcterms.referencesDo, T.X.; Lim, Y. Techno-economic comparison of three energy conversion pathways from empty fruit bunches. Renew. Energy 2016, 90, 307–318.spa
dcterms.referencesMoreno-Sader, K.; Meramo-Hurtado, S.I.; González-Delgado, A.D. Computer-aided environmental and exergy analysis as decision-making tools for selecting bio-oil feedstocks. Renew. Sustain. Energy Rev. 2019, 112, 42–57spa
dcterms.referencesGozmen ¸Sanli, B.; Uludamar, E.; Özcanli, M. Evaluation of energetic-exergetic and sustainability parameters of biodiesel fuels produced from palm oil and opium poppy oil as alternative fuels in diesel engines. Fuel 2019, 258, 116116.spa
dc.identifier.doi10.3390/app11031046
dc.publisher.placeSuizaspa
dc.relation.citationeditionVol. 11, No. 1046 (2021)spa
dc.relation.citationendpage13spa
dc.relation.citationissue1046 (2021)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume11spa
dc.relation.citesGonzález-Delgado, A.D.; Barajas-Solano, A.F.; Leon-Pulido, J. Evaluating the Sustainability and Inherent Safety of a Crude Palm Oil Production Process in North-Colombia. Appl. Sci. 2021, 11, 1046. https://doi. org/10.3390/app11031046
dc.relation.ispartofjournalApplied Sciencesspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalSWROIMeng
dc.subject.proposalROIeng
dc.subject.proposalExergy efficiencyeng
dc.subject.proposalRiskseng
dc.subject.proposalAfrican palmeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).
Excepto si se señala otra cosa, la licencia del ítem se describe como 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).