Mostrar el registro sencillo del ítem
Enhancement of Phycobiliprotein Accumulation in Thermotolerant Oscillatoria sp. through Media Optimization
dc.contributor.author | ZUORRO, Antonio | |
dc.contributor.author | Leal Jerez, Angela Gisselle | |
dc.contributor.author | Morales, Leidy | |
dc.contributor.author | Mogollón Londoño, Sandra Oriana | |
dc.contributor.author | Sánchez, Edwar | |
dc.contributor.author | García-Martinez, Janet | |
dc.contributor.author | Barajas Solano, andres F | |
dc.date.accessioned | 2021-10-16T00:43:38Z | |
dc.date.available | 2021-10-16T00:43:38Z | |
dc.date.issued | 2021-04-12 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/327 | |
dc.description.abstract | Phycobiliproteins (PBPs) are a group of brilliant pigment proteins found in cyanobacteria and red algae; their synthesis and accumulation depend on several factors such as the type of strain employed, nutrient concentration, light intensity, light regimes, and others. This study evaluates the effect of macronutrients (citrate buffer, NaNO3, K2HPO4, MgSO4, CaCl2, Na2CO3, and EDTA) and the concentration of trace metals in BG11 media on the accumulation of PBPs in a thermotolerant strain of Oscillatoria sp. The strain was grown in BG-11 media at 28 °C with a light:dark cycle of 12:12 h at 100 μmol m−2 s −1 for 15 days, and the effect of nutrients was evaluated using a Plackett−Burman Design followed by optimization using a response surface methodology. Results from the concentration of trace metals show that it can be reduced up to half-strength in its initial concentration without affecting both biomass and PBPs. Results from the Plackett−Burman Design revealed that only NaNO3, Na2CO3, and K2HPO4 show a significant increase in PBP production. Optimization employed a central Non-Factorial Response Surface Design with three levels and four factors (34 ) using NaNO3, Na2CO3, K2HPO4, and trace metals as variables, while the other components of BG-11 media (citrate buffer, MgSO4, CaCl2, and EDTA) were used in half of their initial concentration. Results from the optimization show that interaction between Na2CO3 and K2HPO4 highly increased PBPs’ concentration, with values of 15.21, 3.95, and 1.89 (% w/w), respectively. These results demonstrate that identifying and adjusting the concentration of critical nutrients can increase the concentration of PBPs up to two times for phycocyanin and allophycocyanin while four times for phycoerythrin. Finally, the reduction in non-key nutrients’ concentration will reduce the production costs of colorants at an industrial scale and increase the sustainability of the process. | eng |
dc.format.extent | 10 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | ACS Omega | spa |
dc.relation.ispartof | ACS Omega ISSN: 2470-1343, 2021 vol:6 fasc: 16 págs: 10527 - 10536, DOI:10.1021/acsomega.0c04665 | |
dc.rights | 2021 The Authors. Published by American Chemical Society | eng |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.source | https://pubs.acs.org/doi/10.1021/acsomega.0c04665 | spa |
dc.title | Enhancement of Phycobiliprotein Accumulation in Thermotolerant Oscillatoria sp. through Media Optimization | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Kannaujiya, V. K.; Kumar, D.; Pathak, R. J.; Sonker, A. S.; Rajneesh.; Singh, V.; Sundaram, S., Sinha, R. P. Recent advances in production and the biotechnological significance of phycobiliproteins. In New Approaches in Biological Research; Sinha, R.P., Richa., Eds.; Nova Science Publisher: New York, 2017, pp. 1– 34.Google Scholar | spa |
dcterms.references | Santiago-Santos, M. C.; Ponce-Noyola, T.; Olvera-Ramírez, R.; Ortega-López, J.; Cañizares-Villanueva, R. O. Extraction and Purification of Phycocyanin from Calothrix sp. Process Biochem. 2004, 39, 2047– 2052, DOI: 10.1016/j.procbio.2003.10.007 [Crossref], [CAS], Google Scholar | spa |
dcterms.references | Kannaujiya, V. K.; Kumar, D.; Pathak, J.; Sinha, R. P. Phycobiliproteins and Their Commercial Significance. In: Cyanobacteria, From Basic Science to Application; Mishra, A.K., Tiwari, D.N., Rai, A.N. Eds.; Elsevier Inc: London, 2019, pp. 207– 2016[Crossref], Google Scholar | spa |
dcterms.references | Pagels, F.; Guedes, A. C.; Amaro, H. M.; Kijjoa, A.; Vasconcelos, V. Phycobiliproteins from Cyanobacteria: Chemistry and Biotechnological Applications. Biotechnol. Adv. 2019, 37, 422– 443, DOI: 10.1016/j.biotechadv.2019.02.010 [Crossref], [PubMed], [CAS], Google Scholar | spa |
dcterms.references | Dasgupta, C. N. Algae as a source of phycocyanin and other industrially important pigments. In Algal biorefinery: An integrated approach; Das, D., Ed; Springer International Publishing: New Delhi, 2015. pp. 253– 276.[Crossref], Google Scholar | spa |
dcterms.references | İlter, I.; Akyıl, S.; Demirel, Z.; Koç, M.; Conk-Dalay, M.; Kaymak-Ertekin, F. Optimization of Phycocyanin Extraction from Spirulina platensis Using Different Techniques. J. Food Compos. Anal. 2018, 70, 78– 88, DOI: 10.1016/j.jfca.2018.04.007 [Crossref], [CAS], Google Scholar | spa |
dcterms.references | Antelo, F. S.; Anschau, A.; Costa, J. A. V.; Kalil, S. J. Extraction and purification of C-phycocyanin from Spirulina platensis in conventional and integrated aqueous two-phase systems. J. Braz. Chem. Soc. 2010, 21, 921– 926, DOI: 10.1590/S0103-50532010000500022 [Crossref], [CAS], Google Scholar | spa |
dcterms.references | Fernández-Rojas, B.; Hernández-Juárez, J.; Pedraza-Chaverri, J. Nutraceutical Properties of Phycocyanin. J. Funct. Foods. 2014, 11, 375– 392, DOI: 10.1016/j.jff.2014.10.011 [Crossref], [CAS], Google Scholar | spa |
dcterms.references | Manirafasha, E.; Ndikubwimana, T.; Zeng, X.; Lu, Y.; Jing, K. Phycobiliprotein: Potential Microalgae Derived Pharmaceutical and Biological Reagent. Biochem. Eng. J. 2016, 109, 282– 296, DOI: 10.1016/j.bej.2016.01.025 [Crossref], [CAS], Google Scholar | spa |
dcterms.references | Martelli, G.; Folli, C.; Visai, L.; Daglia, M.; Ferrari, D. Thermal Stability Improvement of Blue Colorant C-Phycocyanin from Spirulina platensis for Food Industry Applications. Process Biochem. 2014, 49, 154– 159, DOI: 10.1016/j.procbio.2013.10.008 [Crossref], [CAS], Google Scholar | spa |
dcterms.references | Kumar, J.; Singh, D.; Tyagi, M. B.; Kumar, A. Cyanobacteria: Applications in Biotechnology. In Cyanobacteria, From Basic Science to Application; Mishra, A. K., Tiwari, D. N., Rai, A. N. Eds.; Elsevier Inc: London, 2019, pp. 327– 346.[Crossref], Google Scholar | spa |
dcterms.references | Wu, H.-L.; Wang, G.-H.; Xiang, W.-Z.; Li, T.; He, H. Stability and antioxidant activity of food grade phycocyanin isolated from Spirulina platensis. Int. J. Food Prop. 2016, 19, 2349– 2362, DOI: 10.1080/10942912.2015.1038564 [Crossref], [CAS], Google Scholar | spa |
dcterms.references | Babu, T. S.; Kumar, A.; Varma, A. K. Effect of Light Quality on Phycobilisome Components of the Cyanobacterium Spirulina platensis. Plant Physiol. 1991, 95, 492– 497, DOI: 10.1104/pp.95.2.492 [Crossref], [PubMed], [CAS], Google Scholar | spa |
dcterms.references | Lee, N. K.; Oh, H.-M.; Kim, H.-S.; Ahn, C.-Y. Higher Production of C-Phycocyanin by Nitrogen-Free (Diazotrophic) Cultivation of Nostoc sp. NK and Simplified Extraction by Dark-Cold Shock. Bioresour. Technol. 2017, 227, 164– 170, DOI: 10.1016/j.biortech.2016.12.053 [Crossref], [PubMed], [CAS], Google Scholar | spa |
dcterms.references | Boussiba, S.; Richmond, A. E. Isolation and characterization of phycocyanins from the blue-green alga Spirulina platensis. Arch. Microbiol. 1979, 120, 155– 159, DOI: 10.1007/BF00409102 [Crossref], [CAS], Google Scholar | spa |
dcterms.references | Sarada, R.; Pillai, M. G.; Ravishankar, G. A. Phycocyanin from Spirulina Sp.: Influence of Processing of Biomass on Phycocyanin Yield, Analysis of Efficacy of Extraction Methods and Stability Studies on Phycocyanin. Process Biochem. 1999, 34, 795– 801, DOI: 10.1016/S0032-9592(98)00153-8 [Crossref], [CAS], Google Scholar | spa |
dcterms.references | Pauline, J. M. N.; Achary, A. Novel media for lipid production of Chlorococcum oleofaciens: A RSM approach. Acta Protozool. 2019, 58, 31– 41, DOI: 10.4467/16890027AP.19.003.10834 [Crossref], [CAS], Google Scholar | spa |
dcterms.references | Bunkaew, P.; Kongruang, S. Statistical Approach of Nutrient Optimization for Microalgae Cultivation. E3S Web Conf. 2020, 141, 03009 DOI: 10.1051/e3sconf/202014103009 [Crossref], [CAS], Google Scholar | spa |
dcterms.references | Allen, M. M.; Stanier, R. Y. Growth and division of some unicellular blue-green algae. J. Gen. Microbiol. 1968, 199– 202, DOI: 10.1099/00221287-51-2-199 [Crossref], [PubMed], [CAS], Google Scholar | spa |
dcterms.references | Bischoff, H. W.; Bold, H. C. Phycological Studies IV. Some Soil Algae From Enchanted Rock and Related Algal Species; University of Texas: Austin, 1963, 6318: 1– 95.Google Scholar | spa |
dcterms.references | Stein, J. Handbook of Phycological methods. Culture methods and growth measurements; Cambridge University Press, Cambridge, 1973. 448 pp.Google Scholar | spa |
dcterms.references | Zarrouk, C. Contribution a l’étude du cyanophycée. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthèse de Spirulina maxima (setch et gardner) geitl.Thesis Faculte des Sciences, Universite de Paris: paris 1966.Google Scholar | spa |
dcterms.references | Quintero-Dallos, V.; García-Martínez, J. B.; Contreras-Ropero, J. E.; Barajas-Solano, A. F.; Barajas-Ferrerira, C.; Lavecchia, R.; Zuorro, A. Vinasse as a Sustainable Medium for the Production of Chlorella vulgaris UTEX 1803. Water. 2019, 11, 1526, DOI: 10.3390/w11081526 [Crossref], [CAS], Google Scholar | spa |
dcterms.references | Barajas-Solano, A. F.; Guzmán-Monsalve, A.; Kafarov, V. Effect of Carbon-Nitrogen Ratio for the Biomass Production, Hydrocarbons and Lipids on Botryoccocus Braunii UIS 003. Chem. Eng. Trans. 2016, 49, 247– 252, DOI: 10.3303/CET1649042 [Crossref], Google Scholar | spa |
dcterms.references | Lamela, T.; Márquez-Rocha, F. J. Phycocyanin Production in Seawater Culture of Arthrospira maxima. Cienc. Mar. 2000, 26, 607– 619, DOI: 10.7773/cm.v26i4.619 [Crossref], [CAS], Google Scholar | spa |
dcterms.references | Singh, N. K.; Parmar, A.; Madamwar, D. Optimization of Medium Components for Increased Production of C-Phycocyanin from Phormidium ceylanicum and Its Purification by Single Step Process. Bioresour. Technol. 2009, 100, 1663– 1669, DOI: 10.1016/j.biortech.2008.09.021 [Crossref], [PubMed], [CAS], Google Scholar | spa |
dcterms.references | Ravikumar, K.; Ramalingam, S.; Krishnan, S.; Balu, K. Application of Response Surface Methodology to Optimize the Process Variables for Reactive Red and Acid Brown Dye Removal Using a Novel Adsorbent. Dyes Pigm. 2006, 70, 18−26. | spa |
dcterms.references | Liu, G.-Q.; Wang, X.-L. Optimization of critical medium components using response surface methodology for biomass and extracellular polysaccharide production by Agaricus blazei. Appl. Microbiol. Biotechnol. 2007, 74, 78−83 | spa |
dcterms.references | Thu, N. K.; Tanabe, Y.; Matsuura, H.; Watanabe, M. M. biochemical, and molecular characterization of Oscillatoria kawamurae (Oscillatoriales, Cyanobacteria) isolated from different geographical regions. Phycol Res. 2020, 68, 216−226. | spa |
dcterms.references | Soni, B.; Kalavadia, B.; Trivedi, U.; Madamwar, D. Extraction, Purification and Characterization of Phycocyanin from Oscillatoria QuadripunctulataIsolated from the Rocky Shores of Bet-Dwarka, Gujarat, India. Process Biochem. (Oxford, U. K.) 2006, 41, 2017−2023. | spa |
dcterms.references | Chittapun, S.; Jonjaroen, V.; Khumrangsee, K.; Charoenrat, T. C-Phycocyanin Extraction from Two Freshwater Cyanobacteria by Freeze Thaw and Pulsed Electric Field Techniques to Improve Extraction Efficiency and Purity. Algal Res. 2020, 46, 101789. | spa |
dcterms.references | Prasanth, S.; Kumar Arun, G.; Haridas, M.; Sabu, A. Phycocyanin of Marine Oscillatoria Sp. Inhibits Lipoxygenase by Protein-Protein Interaction-Induced Change of Active Site Entry Apace: A Model for Non-Specific Biofunctions of Phycocyanins. Int. J. Biol. Macromol. 2020, 165, 1111−1118. | spa |
dcterms.references | Thangam, R.; Suresh, V.; Asenath Princy, W.; Rajkumar, M.; SenthilKumar, N.; Gunasekaran, P.; Rengasamy, R.; Anbazhagan, C.; Kaveri, K.; Kannan, S. C-Phycocyanin from Oscillatoria Tenuis Exhibited an Antioxidant and in Vitro Antiproliferative Activity through Induction of Apoptosis and G0/G1 Cell Cycle Arrest. Food Chem. 2013, 140, 262−272 | spa |
dcterms.references | Nainangu, P.; Antonyraj, A. P. M.; Subramanian, K.; Kaliyaperumal, S.; Gopal, S.; Sampath Renuka, P.; A, W. A. In Vitro Screening of Antimicrobial, Antioxidant, Cytotoxic Activities, and Characterization of Bioactive Substances from Freshwater Cyanobacteria Oscillatoria Sp. SSCM01 and Phormidium Sp. SSCM02. Biocatal. Agric. Biotechnol. 2020, 29, 101772 | spa |
dcterms.references | Markou, G.; Vandamme, D.; Muylaert, K. Microalgal and Cyanobacterial Cultivation: The Supply of Nutrients. Water Res. 2014, 65, 186−202. | spa |
dcterms.references | Hsieh-Lo, M.; Castillo, G.; Ochoa-Becerra, M. A.; Mojica, L. Phycocyanin and Phycoerythrin: Strategies to Improve Production Yield and Chemical Stability. Algal Res. 2019, 42, 101600. | spa |
dcterms.references | Johnson, E. M.; Kumar, K.; Das, D. Physicochemical parameters optimization, and purification of phycobiliproteins from the isolated Nostoc sp. Bioresour. Technol. 2014, 166, 541−547. | spa |
dcterms.references | Gilbert, S. M.; Allison, G. G.; Rogers, L. J.; Smith, A. J. Expression of Genes Involved in Phycocyanin Biosynthesis Following Recovery of Synechococcus PCC 6301 from Nitrogen Starvation, and the Effect of Gabaculine on CpcBa Transcript Levels. FEMS Microbiol. Lett. 1996, 140, 93−98 | spa |
dcterms.references | Boussiba, S. Nitrogen Fixing Cyanobacteria Potential Uses. Plant Soil 1991, 137, 177−180. | spa |
dcterms.references | Markou, G.; Georgakakis, D. Cultivation of Filamentous Cyanobacteria (Blue-Green Algae) in Agro-Industrial Wastes and Wastewaters: A Review. Appl. Energy. 2011, 88, 3389−3401. | spa |
dcterms.references | Grobbelaar, J. U. Algal Nutrition − Mineral Nutrition. In: Handbook of Microalgal Culture: Biotechnology and Applied Phycology, Richmond, A. Ed. Blackwell Publishing Ltd., Oxford, 2004, pp. 97− 115. | spa |
dcterms.references | Geider, R.; La Roche, J. Redfield Revisited: Variability of C:N:P in Marine Microalgae and Its Biochemical Basis. Eur. J. Phycol. 2002, 37, 1−17 | spa |
dcterms.references | Tiwari, O. N.; Bhunia, B.; Chakraborty, S.; Goswami, S.; Devi, I. Strategies for Improved Production of Phycobiliproteins (PBPs) by Oscillatoria Sp. BTA170 and Evaluation of Its Thermodynamic and Kinetic Stability. Biochem. Eng. J. 2019, 145, 153−161 | spa |
dcterms.references | Molnár, S.; Kiss, A.; Virág, D.; Forgó, P. Comparative Studies on Accumulation of Selected Microelements by Spirulina platensis and Chlorella vulgaris with the Prospects of Functional Food Development. J. Chem. Eng. Process Technol. 2013, 04, DOI: 10.4172/2157- 7048.1000172 | spa |
dcterms.references | Akbarnezhad, M.; Mehrgan, M. S.; Kamali, A.; Baboli, M. J. Bioaccumulation of Fe+2 and Its Effects on Growth and Pigment Content of Spirulina (Arthrospira Platensis). AACL Bioflux 2016, 9, 227−238. | spa |
dcterms.references | Kudo, I.; Miyamoto, M.; Noiri, Y.; Maita, Y. Combined effects of temperature and iron on the growth and physiology of the marine diatom phaeodactylum tricornutum (bacillariophyceae). J. Phycol. 2008, 36, 1096−1102 | spa |
dcterms.references | Rueter, J. G.; Petersen, R. R. Micronutrient effects on cyanobacterial growth and physiology. N. Z. J. Mar. Freshwater Res. 1987, 21, 435−445. | spa |
dcterms.references | Singh, P.; Guldhe, A.; Kumari, S.; Rawat, I.; Bux, F. Investigation of Combined Effect of Nitrogen, Phosphorus and Iron on Lipid Productivity of Microalgae Ankistrodesmus falcatus KJ671624 Using Response Surface Methodology. Biochem. Eng. J. 2015, 94, 22− 29. | spa |
dcterms.references | Polat, E.; Yüksel, E.; Altınbas, M. Mutual Effect of Sodium and ̧ Magnesium on the Cultivation of Microalgae Auxenochlorella protothecoides. Biomass Bioenergy 2020, 132, 105441. | spa |
dcterms.references | Tran, H.-L.; Kwon, J.-S.; Kim, Z.-H.; Oh, Y.; Lee, C.-G. Statistical Optimization of Culture Media for Growth and Lipid Production of Botryococcus braunii LB572. Biotechnol. Bioprocess Eng. 2010, 15, 277−284. | spa |
dcterms.references | Vishwakarma, R.; Dhar, D. W.; Pabbi, S. Formulation of a Minimal Nutritional Medium for Enhanced Lipid Productivity in Chlorella sp. and Botryococcus sp. Using Response Surface Methodology. Water Sci. Technol. 2018, 77, 1660−1672. | spa |
dcterms.references | Cheng, K.-C.; Ren, M.; Ogden, K. L. Statistical Optimization of Culture Media for Growth and Lipid Production of Chlorella protothecoides UTEX 250. Bioresour. Technol. 2013, 128, 44−48. | spa |
dcterms.references | Chen, C.-Y.; Ho, S.-H.; Liu, C.-C.; Chang, J.-S. Enhancing Lutein Production with Chlorella sorokiniana Mb-1 by Optimizing Acetate and Nitrate Concentrations under Mixotrophic Growth. J. Taiwan Inst. Chem. Eng. 2017, 79, 88−96. | spa |
dcterms.references | Tandon, P.; Jin, Q.; Huang, L.; Song, R.; Shan, A. Effects of Tryptophan Along with Sodium Pyruvate and Sodium Thiosulfate on Chlorella vulgaris Growth. Waste Biomass Valoriz. 2020, 11, 967−982. | spa |
dcterms.references | González-Delgado, A. D.; Barajas-Solano, A. F.; Ardila-Á lvarez, A. M. Produccion de biomasa y protei ́ ́ nas de Chlorella vulgaris Beyerinck (Chlorellales: Chlorellaceae) a traves del disen ́ ̃o de medios de cultivo selectivos. Cienc. Tecnol. Agropecuaria 2017, 18, 451. | spa |
dcterms.references | Wang, S.; Cao, M.; Wang, B.; Deng, R.; Gao, Y.; Liu, P. Optimization of growth requirements and scale-up cultivation of freshwater algae Desmodesmus armatus using response surface methodology. Aquacult. Fish. Manage. 2019, 50, 3313−3325. | spa |
dcterms.references | Kadkhodaei, S.; Abbasiliasi, S.; Shun, T. J.; Fard Masoumi, H. R.; Mohamed, M. S.; Movahedi, A.; Rahim, R.; Ariff, A. B. Enhancement of Protein Production by Microalgae Dunaliella salina under Mixotrophic Conditions Using Response Surface Methodology. RSC Adv. 2015, 5, 38141−38151. | spa |
dcterms.references | Mubarak, M.; Shaija, A.; Suchithra, T. V. Cost effective approach for production of Chlorella pyrenoidosa: a RSM based study. Waste Biomass Valoriz. 2019, 10, 3307−3319. | spa |
dcterms.references | Pandey, A.; Gupta, A.; Sunny, A.; Kumar, S.; Srivastava, S. Multi-Objective Optimization of Media Components for Improved Algae Biomass, Fatty Acid and Starch Biosynthesis from Scenedesmus sp. ASK22 Using Desirability Function Approach. Renewable Energy 2020, 150, 476−486. | spa |
dcterms.references | Suastes-Rivas, J. K.; Hernández-Altamirano, R.; MenaCervantes, V. Y.; Chairez, I. Simultaneous Optimization of Biomass and Metabolite Production by a Microalgae-Yeast Co-culture Under Inorganic Micronutrients. BioEnergy Res. 2020, 13, 974. | spa |
dcterms.references | Cuéllar-García, D. J.; Rangel-Basto, Y. A.; Urbina-Suarez, N. A.; Barajas-Solano, A. F.; Muñoz-Peñaloza, Y. A. Lipids production from Scenedesmus obliquus through carbon/nitrogen ratio optimization. J. Phys.: Conf. Ser. 2019, 1388, No. 012043 | spa |
dcterms.references | Tourang, M.; Baghdadi, M.; Torang, A.; Sarkhosh, S. Optimization of Carbohydrate Productivity of Spirulina Microalgae as a Potential Feedstock for Bioethanol Production. Int. J. Environ. Sci. Technol. 2019, 16, 1303−1318. | spa |
dcterms.references | ) Fekrat, F.; Nami, B.; Ghanavati, H.; Ghaffari, A.; Shahbazi, M. Optimization of Chitosan/Activated Charcoal-Based Purification of Arthrospira platensis Phycocyanin Using Response Surface Methodology. J. Appl. Phycol. 2019, 31, 1095−1105. | spa |
dcterms.references | Gammoudi, S.; Athmouni, K.; Nasri, A.; Diwani, N.; Grati, I.; Belhaj, D.; Bouaziz-Ketata, H.; Fki, L.; El Feki, A.; Ayadi, H. \Optimization, Isolation, Characterization and Hepatoprotective Effect of a Novel Pigment-Protein Complex (Phycocyanin) Producing Microalga: Phormidium versicolor NCC-466 Using Response Surface Methodology. Int. J. Biol. Macromol. 2019, 137, 647−656 | spa |
dcterms.references | Hadiyanto, H.; Suttrisnorhadi, S. Response surface optimization of ultrasound assisted extraction (UAE) of phycocyanin from microalgae Spirulina platensis. Emir. J. Food Agric. 2016, 28, 227−234. | spa |
dcterms.references | Khazi, M. I.; Demirel, Z.; Dalay, M. C. Evaluation of Growth and Phycobiliprotein Composition of Cyanobacteria Isolates Cultivated in Different Nitrogen Sources. J. Appl. Phycol. 2018, 30, 1513−1523. | spa |
dcterms.references | Martínez, J. M.; Luengo, E.; Saldaña, G.; Á lvarez, I.; Raso, J. CPhycocyanin Extraction Assisted by Pulsed Electric Field from Artrosphira platensis. Food Res. Int. 2017, 99, 1042−1047. | spa |
dcterms.references | Nur, M. M. A.; Garcia, G. M.; Boelen, P.; Buma, A. G. J. Enhancement of C-Phycocyanin Productivity by Arthrospira platensis When Growing on Palm Oil Mill Effluent in a Two-Stage SemiContinuous Cultivation Mode. J. Appl. Phycol. 2019, 31, 2855−2867 | spa |
dcterms.references | Pereira, T.; Barroso, S.; Mendes, S.; Amaral, R. A.; Dias, J. R.; Baptista, T.; Saraiva, J. A.; Alves, N. M.; Gil, M. M. Optimization of Phycobiliprotein Pigments Extraction from Red Algae Gracilaria gracilis for Substitution of Synthetic Food Colorants. Food Chem. 2020, 126688. | spa |
dcterms.references | Rodrigues, R. D. P.; de Castro, F. C.; de Santiago-Aguiar, R. S.; Rocha, M. V. P. Ultrasound-Assisted Extraction of Phycobiliproteins from Spirulina (Arthrospira) platensis Using Protic Ionic Liquids as Solvent. Algal Res. 2018, 31, 454−462 | spa |
dcterms.references | Ruiz-Domínguez, M. C.; Jáuregui, M.; Medina, E.; Jaime, C.; Cerezal, P. Rapid Green Extractions of C-Phycocyanin from Arthrospira maxima for Functional Applications. Appl. Sci. 2019, 9, 1987. | spa |
dcterms.references | Mogany, T.; Swalaha, F. M.; Kumari, S.; Bux, F. Elucidating the Role of Nutrients in C-Phycocyanin Production by the Halophilic Cyanobacterium Euhalothece sp. J. Appl. Phycol. 2018, 30, 2259−2271. | spa |
dcterms.references | Kumar Saini, D.; Yadav, D.; Pabbi, S.; Chhabra, D.; Shukla, P. Phycobiliproteins from Anabaena variabilis CCC421 and Its Production Enhancement Strategies Using Combinatory Evolutionary Algorithm Approach. Bioresour. Technol. 2020, 309, 123347. | spa |
dcterms.references | Xing, W.; Lusan, L. Effects of the different nitrogen, phosphorus and carbon source on the growth and glycogen reserves in Synechocystis and Anabaena. Afr. J. Microbiol. Res. 2013, 7, 2820− 2827. | spa |
dcterms.references | Rastogi, R. P.; Sonani, R. R.; Madamwar, D. Physico-Chemical Factors Affecting the in Vitro Stability of Phycobiliproteins from Phormidium rubidum A09DM. Bioresour. Technol. 2015, 190, 219− 226. | spa |
dcterms.references | Abd El-Baky, H. H.; El-Baroty, G. S. Characterization and Bioactivity of Phycocyanin Isolated from Spirulina maxima Grown under Salt Stress. Food Funct. 2012, 3, 381−388. | spa |
dcterms.references | Maza, L. D. L. Á . R.; Guevara, M. Á .; Gómez, B. J.; ArredondoVega, B.; Cortez, R.; Licet, B. Produccion de pigmentos procedentes ́ de Arthrospira maxima cultivada en fotobiorreactores. Rev. Colomb. Biotecnol. 2017, 19, 108−114. | spa |
dcterms.references | Xie, Y.; Jin, Y.; Zeng, X.; Chen, J.; Lu, Y.; Jing, K. Fed-Batch Strategy for Enhancing Cell Growth and C-Phycocyanin Production of Arthrospira (Spirulina) platensis under Phototrophic Cultivation. Bioresour. Technol. 2015, 180, 281−287. | spa |
dcterms.references | Haddad, M. F.; Dayioglu, T.; Yaman, M.; Nalbantoglu, B.; Cakmak, T. Long-Term Diazotrophic Cultivation of Trichormus sp. IMU26: Evaluation of Physiological Changes Related to Elevated Phycobiliprotein Content. J. Appl. Phycol. 2020, 32, 881−888. | spa |
dcterms.references | Plackett, R. L.; Burman, J. P. The design of optimum multifactorial experiments. Biometrika 1946, 33, 305−325. | spa |
dcterms.references | Bennett, A.; Bogorad, L. Complementary Chromatic Adaptation in a Filamentous Blue-Green Alga. J. Cell Biol. 1973, 58, 419−435. | spa |
dcterms.references | Patil, G.; Chethana, S.; Sridevi, A. S.; Raghavarao, K. S. M. S. Method to Obtain C-Phycocyanin of High Purity. J. Chromatogr. A 2006, 1127, 76−81. | spa |
dc.identifier.doi | 10.1021/acsomega.0c04665 | |
dc.relation.citationedition | Vol. 6, No. 16 (2021) | spa |
dc.relation.citationendpage | 10536 | spa |
dc.relation.citationissue | 16 (2021) | spa |
dc.relation.citationstartpage | 10527 | spa |
dc.relation.citationvolume | 6 | spa |
dc.relation.cites | Antonio Zuorro, Angela G. Leal-Jerez, Leidy K. Morales-Rivas, Sandra O. Mogollón-Londoño, Edwar M. Sanchez-Galvis, Janet B. García-Martínez, and Andrés F. Barajas-Solano ACS Omega 2021 6 (16), 10527-10536 DOI: 10.1021/acsomega.0c04665 | |
dc.relation.ispartofjournal | ACS Omega | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Ambiente y Vida - GIAV [124]