Mostrar el registro sencillo del ítem

dc.contributor.authorZUORRO, Antonio
dc.contributor.authorLeal Jerez, Angela Gisselle
dc.contributor.authorMorales, Leidy
dc.contributor.authorMogollón Londoño, Sandra Oriana
dc.contributor.authorSánchez, Edwar
dc.contributor.authorGarcía-Martinez, Janet
dc.contributor.authorBarajas Solano, andres F
dc.date.accessioned2021-10-16T00:43:38Z
dc.date.available2021-10-16T00:43:38Z
dc.date.issued2021-04-12
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/327
dc.description.abstractPhycobiliproteins (PBPs) are a group of brilliant pigment proteins found in cyanobacteria and red algae; their synthesis and accumulation depend on several factors such as the type of strain employed, nutrient concentration, light intensity, light regimes, and others. This study evaluates the effect of macronutrients (citrate buffer, NaNO3, K2HPO4, MgSO4, CaCl2, Na2CO3, and EDTA) and the concentration of trace metals in BG11 media on the accumulation of PBPs in a thermotolerant strain of Oscillatoria sp. The strain was grown in BG-11 media at 28 °C with a light:dark cycle of 12:12 h at 100 μmol m−2 s −1 for 15 days, and the effect of nutrients was evaluated using a Plackett−Burman Design followed by optimization using a response surface methodology. Results from the concentration of trace metals show that it can be reduced up to half-strength in its initial concentration without affecting both biomass and PBPs. Results from the Plackett−Burman Design revealed that only NaNO3, Na2CO3, and K2HPO4 show a significant increase in PBP production. Optimization employed a central Non-Factorial Response Surface Design with three levels and four factors (34 ) using NaNO3, Na2CO3, K2HPO4, and trace metals as variables, while the other components of BG-11 media (citrate buffer, MgSO4, CaCl2, and EDTA) were used in half of their initial concentration. Results from the optimization show that interaction between Na2CO3 and K2HPO4 highly increased PBPs’ concentration, with values of 15.21, 3.95, and 1.89 (% w/w), respectively. These results demonstrate that identifying and adjusting the concentration of critical nutrients can increase the concentration of PBPs up to two times for phycocyanin and allophycocyanin while four times for phycoerythrin. Finally, the reduction in non-key nutrients’ concentration will reduce the production costs of colorants at an industrial scale and increase the sustainability of the process.eng
dc.format.extent10 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherACS Omegaspa
dc.relation.ispartofACS Omega ISSN: 2470-1343, 2021 vol:6 fasc: 16 págs: 10527 - 10536, DOI:10.1021/acsomega.0c04665
dc.rights2021 The Authors. Published by American Chemical Societyeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.sourcehttps://pubs.acs.org/doi/10.1021/acsomega.0c04665spa
dc.titleEnhancement of Phycobiliprotein Accumulation in Thermotolerant Oscillatoria sp. through Media Optimizationeng
dc.typeArtículo de revistaspa
dcterms.referencesKannaujiya, V. K.; Kumar, D.; Pathak, R. J.; Sonker, A. S.; Rajneesh.; Singh, V.; Sundaram, S., Sinha, R. P. Recent advances in production and the biotechnological significance of phycobiliproteins. In New Approaches in Biological Research; Sinha, R.P., Richa., Eds.; Nova Science Publisher: New York, 2017, pp. 1– 34.Google Scholarspa
dcterms.referencesSantiago-Santos, M. C.; Ponce-Noyola, T.; Olvera-Ramírez, R.; Ortega-López, J.; Cañizares-Villanueva, R. O. Extraction and Purification of Phycocyanin from Calothrix sp. Process Biochem. 2004, 39, 2047– 2052, DOI: 10.1016/j.procbio.2003.10.007 [Crossref], [CAS], Google Scholarspa
dcterms.referencesKannaujiya, V. K.; Kumar, D.; Pathak, J.; Sinha, R. P. Phycobiliproteins and Their Commercial Significance. In: Cyanobacteria, From Basic Science to Application; Mishra, A.K., Tiwari, D.N., Rai, A.N. Eds.; Elsevier Inc: London, 2019, pp. 207– 2016[Crossref], Google Scholarspa
dcterms.referencesPagels, F.; Guedes, A. C.; Amaro, H. M.; Kijjoa, A.; Vasconcelos, V. Phycobiliproteins from Cyanobacteria: Chemistry and Biotechnological Applications. Biotechnol. Adv. 2019, 37, 422– 443, DOI: 10.1016/j.biotechadv.2019.02.010 [Crossref], [PubMed], [CAS], Google Scholarspa
dcterms.referencesDasgupta, C. N. Algae as a source of phycocyanin and other industrially important pigments. In Algal biorefinery: An integrated approach; Das, D., Ed; Springer International Publishing: New Delhi, 2015. pp. 253– 276.[Crossref], Google Scholarspa
dcterms.referencesİlter, I.; Akyıl, S.; Demirel, Z.; Koç, M.; Conk-Dalay, M.; Kaymak-Ertekin, F. Optimization of Phycocyanin Extraction from Spirulina platensis Using Different Techniques. J. Food Compos. Anal. 2018, 70, 78– 88, DOI: 10.1016/j.jfca.2018.04.007 [Crossref], [CAS], Google Scholarspa
dcterms.referencesAntelo, F. S.; Anschau, A.; Costa, J. A. V.; Kalil, S. J. Extraction and purification of C-phycocyanin from Spirulina platensis in conventional and integrated aqueous two-phase systems. J. Braz. Chem. Soc. 2010, 21, 921– 926, DOI: 10.1590/S0103-50532010000500022 [Crossref], [CAS], Google Scholarspa
dcterms.referencesFernández-Rojas, B.; Hernández-Juárez, J.; Pedraza-Chaverri, J. Nutraceutical Properties of Phycocyanin. J. Funct. Foods. 2014, 11, 375– 392, DOI: 10.1016/j.jff.2014.10.011 [Crossref], [CAS], Google Scholarspa
dcterms.referencesManirafasha, E.; Ndikubwimana, T.; Zeng, X.; Lu, Y.; Jing, K. Phycobiliprotein: Potential Microalgae Derived Pharmaceutical and Biological Reagent. Biochem. Eng. J. 2016, 109, 282– 296, DOI: 10.1016/j.bej.2016.01.025 [Crossref], [CAS], Google Scholarspa
dcterms.referencesMartelli, G.; Folli, C.; Visai, L.; Daglia, M.; Ferrari, D. Thermal Stability Improvement of Blue Colorant C-Phycocyanin from Spirulina platensis for Food Industry Applications. Process Biochem. 2014, 49, 154– 159, DOI: 10.1016/j.procbio.2013.10.008 [Crossref], [CAS], Google Scholarspa
dcterms.referencesKumar, J.; Singh, D.; Tyagi, M. B.; Kumar, A. Cyanobacteria: Applications in Biotechnology. In Cyanobacteria, From Basic Science to Application; Mishra, A. K., Tiwari, D. N., Rai, A. N. Eds.; Elsevier Inc: London, 2019, pp. 327– 346.[Crossref], Google Scholarspa
dcterms.referencesWu, H.-L.; Wang, G.-H.; Xiang, W.-Z.; Li, T.; He, H. Stability and antioxidant activity of food grade phycocyanin isolated from Spirulina platensis. Int. J. Food Prop. 2016, 19, 2349– 2362, DOI: 10.1080/10942912.2015.1038564 [Crossref], [CAS], Google Scholarspa
dcterms.referencesBabu, T. S.; Kumar, A.; Varma, A. K. Effect of Light Quality on Phycobilisome Components of the Cyanobacterium Spirulina platensis. Plant Physiol. 1991, 95, 492– 497, DOI: 10.1104/pp.95.2.492 [Crossref], [PubMed], [CAS], Google Scholarspa
dcterms.referencesLee, N. K.; Oh, H.-M.; Kim, H.-S.; Ahn, C.-Y. Higher Production of C-Phycocyanin by Nitrogen-Free (Diazotrophic) Cultivation of Nostoc sp. NK and Simplified Extraction by Dark-Cold Shock. Bioresour. Technol. 2017, 227, 164– 170, DOI: 10.1016/j.biortech.2016.12.053 [Crossref], [PubMed], [CAS], Google Scholarspa
dcterms.referencesBoussiba, S.; Richmond, A. E. Isolation and characterization of phycocyanins from the blue-green alga Spirulina platensis. Arch. Microbiol. 1979, 120, 155– 159, DOI: 10.1007/BF00409102 [Crossref], [CAS], Google Scholarspa
dcterms.referencesSarada, R.; Pillai, M. G.; Ravishankar, G. A. Phycocyanin from Spirulina Sp.: Influence of Processing of Biomass on Phycocyanin Yield, Analysis of Efficacy of Extraction Methods and Stability Studies on Phycocyanin. Process Biochem. 1999, 34, 795– 801, DOI: 10.1016/S0032-9592(98)00153-8 [Crossref], [CAS], Google Scholarspa
dcterms.referencesPauline, J. M. N.; Achary, A. Novel media for lipid production of Chlorococcum oleofaciens: A RSM approach. Acta Protozool. 2019, 58, 31– 41, DOI: 10.4467/16890027AP.19.003.10834 [Crossref], [CAS], Google Scholarspa
dcterms.referencesBunkaew, P.; Kongruang, S. Statistical Approach of Nutrient Optimization for Microalgae Cultivation. E3S Web Conf. 2020, 141, 03009 DOI: 10.1051/e3sconf/202014103009 [Crossref], [CAS], Google Scholarspa
dcterms.referencesAllen, M. M.; Stanier, R. Y. Growth and division of some unicellular blue-green algae. J. Gen. Microbiol. 1968, 199– 202, DOI: 10.1099/00221287-51-2-199 [Crossref], [PubMed], [CAS], Google Scholarspa
dcterms.referencesBischoff, H. W.; Bold, H. C. Phycological Studies IV. Some Soil Algae From Enchanted Rock and Related Algal Species; University of Texas: Austin, 1963, 6318: 1– 95.Google Scholarspa
dcterms.referencesStein, J. Handbook of Phycological methods. Culture methods and growth measurements; Cambridge University Press, Cambridge, 1973. 448 pp.Google Scholarspa
dcterms.referencesZarrouk, C. Contribution a l’étude du cyanophycée. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthèse de Spirulina maxima (setch et gardner) geitl.Thesis Faculte des Sciences, Universite de Paris: paris 1966.Google Scholarspa
dcterms.referencesQuintero-Dallos, V.; García-Martínez, J. B.; Contreras-Ropero, J. E.; Barajas-Solano, A. F.; Barajas-Ferrerira, C.; Lavecchia, R.; Zuorro, A. Vinasse as a Sustainable Medium for the Production of Chlorella vulgaris UTEX 1803. Water. 2019, 11, 1526, DOI: 10.3390/w11081526 [Crossref], [CAS], Google Scholarspa
dcterms.referencesBarajas-Solano, A. F.; Guzmán-Monsalve, A.; Kafarov, V. Effect of Carbon-Nitrogen Ratio for the Biomass Production, Hydrocarbons and Lipids on Botryoccocus Braunii UIS 003. Chem. Eng. Trans. 2016, 49, 247– 252, DOI: 10.3303/CET1649042 [Crossref], Google Scholarspa
dcterms.referencesLamela, T.; Márquez-Rocha, F. J. Phycocyanin Production in Seawater Culture of Arthrospira maxima. Cienc. Mar. 2000, 26, 607– 619, DOI: 10.7773/cm.v26i4.619 [Crossref], [CAS], Google Scholarspa
dcterms.referencesSingh, N. K.; Parmar, A.; Madamwar, D. Optimization of Medium Components for Increased Production of C-Phycocyanin from Phormidium ceylanicum and Its Purification by Single Step Process. Bioresour. Technol. 2009, 100, 1663– 1669, DOI: 10.1016/j.biortech.2008.09.021 [Crossref], [PubMed], [CAS], Google Scholarspa
dcterms.referencesRavikumar, K.; Ramalingam, S.; Krishnan, S.; Balu, K. Application of Response Surface Methodology to Optimize the Process Variables for Reactive Red and Acid Brown Dye Removal Using a Novel Adsorbent. Dyes Pigm. 2006, 70, 18−26.spa
dcterms.referencesLiu, G.-Q.; Wang, X.-L. Optimization of critical medium components using response surface methodology for biomass and extracellular polysaccharide production by Agaricus blazei. Appl. Microbiol. Biotechnol. 2007, 74, 78−83spa
dcterms.referencesThu, N. K.; Tanabe, Y.; Matsuura, H.; Watanabe, M. M. biochemical, and molecular characterization of Oscillatoria kawamurae (Oscillatoriales, Cyanobacteria) isolated from different geographical regions. Phycol Res. 2020, 68, 216−226.spa
dcterms.referencesSoni, B.; Kalavadia, B.; Trivedi, U.; Madamwar, D. Extraction, Purification and Characterization of Phycocyanin from Oscillatoria QuadripunctulataIsolated from the Rocky Shores of Bet-Dwarka, Gujarat, India. Process Biochem. (Oxford, U. K.) 2006, 41, 2017−2023.spa
dcterms.referencesChittapun, S.; Jonjaroen, V.; Khumrangsee, K.; Charoenrat, T. C-Phycocyanin Extraction from Two Freshwater Cyanobacteria by Freeze Thaw and Pulsed Electric Field Techniques to Improve Extraction Efficiency and Purity. Algal Res. 2020, 46, 101789.spa
dcterms.referencesPrasanth, S.; Kumar Arun, G.; Haridas, M.; Sabu, A. Phycocyanin of Marine Oscillatoria Sp. Inhibits Lipoxygenase by Protein-Protein Interaction-Induced Change of Active Site Entry Apace: A Model for Non-Specific Biofunctions of Phycocyanins. Int. J. Biol. Macromol. 2020, 165, 1111−1118.spa
dcterms.referencesThangam, R.; Suresh, V.; Asenath Princy, W.; Rajkumar, M.; SenthilKumar, N.; Gunasekaran, P.; Rengasamy, R.; Anbazhagan, C.; Kaveri, K.; Kannan, S. C-Phycocyanin from Oscillatoria Tenuis Exhibited an Antioxidant and in Vitro Antiproliferative Activity through Induction of Apoptosis and G0/G1 Cell Cycle Arrest. Food Chem. 2013, 140, 262−272spa
dcterms.referencesNainangu, P.; Antonyraj, A. P. M.; Subramanian, K.; Kaliyaperumal, S.; Gopal, S.; Sampath Renuka, P.; A, W. A. In Vitro Screening of Antimicrobial, Antioxidant, Cytotoxic Activities, and Characterization of Bioactive Substances from Freshwater Cyanobacteria Oscillatoria Sp. SSCM01 and Phormidium Sp. SSCM02. Biocatal. Agric. Biotechnol. 2020, 29, 101772spa
dcterms.referencesMarkou, G.; Vandamme, D.; Muylaert, K. Microalgal and Cyanobacterial Cultivation: The Supply of Nutrients. Water Res. 2014, 65, 186−202.spa
dcterms.referencesHsieh-Lo, M.; Castillo, G.; Ochoa-Becerra, M. A.; Mojica, L. Phycocyanin and Phycoerythrin: Strategies to Improve Production Yield and Chemical Stability. Algal Res. 2019, 42, 101600.spa
dcterms.referencesJohnson, E. M.; Kumar, K.; Das, D. Physicochemical parameters optimization, and purification of phycobiliproteins from the isolated Nostoc sp. Bioresour. Technol. 2014, 166, 541−547.spa
dcterms.referencesGilbert, S. M.; Allison, G. G.; Rogers, L. J.; Smith, A. J. Expression of Genes Involved in Phycocyanin Biosynthesis Following Recovery of Synechococcus PCC 6301 from Nitrogen Starvation, and the Effect of Gabaculine on CpcBa Transcript Levels. FEMS Microbiol. Lett. 1996, 140, 93−98spa
dcterms.referencesBoussiba, S. Nitrogen Fixing Cyanobacteria Potential Uses. Plant Soil 1991, 137, 177−180.spa
dcterms.referencesMarkou, G.; Georgakakis, D. Cultivation of Filamentous Cyanobacteria (Blue-Green Algae) in Agro-Industrial Wastes and Wastewaters: A Review. Appl. Energy. 2011, 88, 3389−3401.spa
dcterms.referencesGrobbelaar, J. U. Algal Nutrition − Mineral Nutrition. In: Handbook of Microalgal Culture: Biotechnology and Applied Phycology, Richmond, A. Ed. Blackwell Publishing Ltd., Oxford, 2004, pp. 97− 115.spa
dcterms.referencesGeider, R.; La Roche, J. Redfield Revisited: Variability of C:N:P in Marine Microalgae and Its Biochemical Basis. Eur. J. Phycol. 2002, 37, 1−17spa
dcterms.referencesTiwari, O. N.; Bhunia, B.; Chakraborty, S.; Goswami, S.; Devi, I. Strategies for Improved Production of Phycobiliproteins (PBPs) by Oscillatoria Sp. BTA170 and Evaluation of Its Thermodynamic and Kinetic Stability. Biochem. Eng. J. 2019, 145, 153−161spa
dcterms.referencesMolnár, S.; Kiss, A.; Virág, D.; Forgó, P. Comparative Studies on Accumulation of Selected Microelements by Spirulina platensis and Chlorella vulgaris with the Prospects of Functional Food Development. J. Chem. Eng. Process Technol. 2013, 04, DOI: 10.4172/2157- 7048.1000172spa
dcterms.referencesAkbarnezhad, M.; Mehrgan, M. S.; Kamali, A.; Baboli, M. J. Bioaccumulation of Fe+2 and Its Effects on Growth and Pigment Content of Spirulina (Arthrospira Platensis). AACL Bioflux 2016, 9, 227−238.spa
dcterms.referencesKudo, I.; Miyamoto, M.; Noiri, Y.; Maita, Y. Combined effects of temperature and iron on the growth and physiology of the marine diatom phaeodactylum tricornutum (bacillariophyceae). J. Phycol. 2008, 36, 1096−1102spa
dcterms.referencesRueter, J. G.; Petersen, R. R. Micronutrient effects on cyanobacterial growth and physiology. N. Z. J. Mar. Freshwater Res. 1987, 21, 435−445.spa
dcterms.referencesSingh, P.; Guldhe, A.; Kumari, S.; Rawat, I.; Bux, F. Investigation of Combined Effect of Nitrogen, Phosphorus and Iron on Lipid Productivity of Microalgae Ankistrodesmus falcatus KJ671624 Using Response Surface Methodology. Biochem. Eng. J. 2015, 94, 22− 29.spa
dcterms.referencesPolat, E.; Yüksel, E.; Altınbas, M. Mutual Effect of Sodium and ̧ Magnesium on the Cultivation of Microalgae Auxenochlorella protothecoides. Biomass Bioenergy 2020, 132, 105441.spa
dcterms.referencesTran, H.-L.; Kwon, J.-S.; Kim, Z.-H.; Oh, Y.; Lee, C.-G. Statistical Optimization of Culture Media for Growth and Lipid Production of Botryococcus braunii LB572. Biotechnol. Bioprocess Eng. 2010, 15, 277−284.spa
dcterms.referencesVishwakarma, R.; Dhar, D. W.; Pabbi, S. Formulation of a Minimal Nutritional Medium for Enhanced Lipid Productivity in Chlorella sp. and Botryococcus sp. Using Response Surface Methodology. Water Sci. Technol. 2018, 77, 1660−1672.spa
dcterms.referencesCheng, K.-C.; Ren, M.; Ogden, K. L. Statistical Optimization of Culture Media for Growth and Lipid Production of Chlorella protothecoides UTEX 250. Bioresour. Technol. 2013, 128, 44−48.spa
dcterms.referencesChen, C.-Y.; Ho, S.-H.; Liu, C.-C.; Chang, J.-S. Enhancing Lutein Production with Chlorella sorokiniana Mb-1 by Optimizing Acetate and Nitrate Concentrations under Mixotrophic Growth. J. Taiwan Inst. Chem. Eng. 2017, 79, 88−96.spa
dcterms.referencesTandon, P.; Jin, Q.; Huang, L.; Song, R.; Shan, A. Effects of Tryptophan Along with Sodium Pyruvate and Sodium Thiosulfate on Chlorella vulgaris Growth. Waste Biomass Valoriz. 2020, 11, 967−982.spa
dcterms.referencesGonzález-Delgado, A. D.; Barajas-Solano, A. F.; Ardila-Á lvarez, A. M. Produccion de biomasa y protei ́ ́ nas de Chlorella vulgaris Beyerinck (Chlorellales: Chlorellaceae) a traves del disen ́ ̃o de medios de cultivo selectivos. Cienc. Tecnol. Agropecuaria 2017, 18, 451.spa
dcterms.referencesWang, S.; Cao, M.; Wang, B.; Deng, R.; Gao, Y.; Liu, P. Optimization of growth requirements and scale-up cultivation of freshwater algae Desmodesmus armatus using response surface methodology. Aquacult. Fish. Manage. 2019, 50, 3313−3325.spa
dcterms.referencesKadkhodaei, S.; Abbasiliasi, S.; Shun, T. J.; Fard Masoumi, H. R.; Mohamed, M. S.; Movahedi, A.; Rahim, R.; Ariff, A. B. Enhancement of Protein Production by Microalgae Dunaliella salina under Mixotrophic Conditions Using Response Surface Methodology. RSC Adv. 2015, 5, 38141−38151.spa
dcterms.referencesMubarak, M.; Shaija, A.; Suchithra, T. V. Cost effective approach for production of Chlorella pyrenoidosa: a RSM based study. Waste Biomass Valoriz. 2019, 10, 3307−3319.spa
dcterms.referencesPandey, A.; Gupta, A.; Sunny, A.; Kumar, S.; Srivastava, S. Multi-Objective Optimization of Media Components for Improved Algae Biomass, Fatty Acid and Starch Biosynthesis from Scenedesmus sp. ASK22 Using Desirability Function Approach. Renewable Energy 2020, 150, 476−486.spa
dcterms.referencesSuastes-Rivas, J. K.; Hernández-Altamirano, R.; MenaCervantes, V. Y.; Chairez, I. Simultaneous Optimization of Biomass and Metabolite Production by a Microalgae-Yeast Co-culture Under Inorganic Micronutrients. BioEnergy Res. 2020, 13, 974.spa
dcterms.referencesCuéllar-García, D. J.; Rangel-Basto, Y. A.; Urbina-Suarez, N. A.; Barajas-Solano, A. F.; Muñoz-Peñaloza, Y. A. Lipids production from Scenedesmus obliquus through carbon/nitrogen ratio optimization. J. Phys.: Conf. Ser. 2019, 1388, No. 012043spa
dcterms.referencesTourang, M.; Baghdadi, M.; Torang, A.; Sarkhosh, S. Optimization of Carbohydrate Productivity of Spirulina Microalgae as a Potential Feedstock for Bioethanol Production. Int. J. Environ. Sci. Technol. 2019, 16, 1303−1318.spa
dcterms.references) Fekrat, F.; Nami, B.; Ghanavati, H.; Ghaffari, A.; Shahbazi, M. Optimization of Chitosan/Activated Charcoal-Based Purification of Arthrospira platensis Phycocyanin Using Response Surface Methodology. J. Appl. Phycol. 2019, 31, 1095−1105.spa
dcterms.referencesGammoudi, S.; Athmouni, K.; Nasri, A.; Diwani, N.; Grati, I.; Belhaj, D.; Bouaziz-Ketata, H.; Fki, L.; El Feki, A.; Ayadi, H. \Optimization, Isolation, Characterization and Hepatoprotective Effect of a Novel Pigment-Protein Complex (Phycocyanin) Producing Microalga: Phormidium versicolor NCC-466 Using Response Surface Methodology. Int. J. Biol. Macromol. 2019, 137, 647−656spa
dcterms.referencesHadiyanto, H.; Suttrisnorhadi, S. Response surface optimization of ultrasound assisted extraction (UAE) of phycocyanin from microalgae Spirulina platensis. Emir. J. Food Agric. 2016, 28, 227−234.spa
dcterms.referencesKhazi, M. I.; Demirel, Z.; Dalay, M. C. Evaluation of Growth and Phycobiliprotein Composition of Cyanobacteria Isolates Cultivated in Different Nitrogen Sources. J. Appl. Phycol. 2018, 30, 1513−1523.spa
dcterms.referencesMartínez, J. M.; Luengo, E.; Saldaña, G.; Á lvarez, I.; Raso, J. CPhycocyanin Extraction Assisted by Pulsed Electric Field from Artrosphira platensis. Food Res. Int. 2017, 99, 1042−1047.spa
dcterms.referencesNur, M. M. A.; Garcia, G. M.; Boelen, P.; Buma, A. G. J. Enhancement of C-Phycocyanin Productivity by Arthrospira platensis When Growing on Palm Oil Mill Effluent in a Two-Stage SemiContinuous Cultivation Mode. J. Appl. Phycol. 2019, 31, 2855−2867spa
dcterms.referencesPereira, T.; Barroso, S.; Mendes, S.; Amaral, R. A.; Dias, J. R.; Baptista, T.; Saraiva, J. A.; Alves, N. M.; Gil, M. M. Optimization of Phycobiliprotein Pigments Extraction from Red Algae Gracilaria gracilis for Substitution of Synthetic Food Colorants. Food Chem. 2020, 126688.spa
dcterms.referencesRodrigues, R. D. P.; de Castro, F. C.; de Santiago-Aguiar, R. S.; Rocha, M. V. P. Ultrasound-Assisted Extraction of Phycobiliproteins from Spirulina (Arthrospira) platensis Using Protic Ionic Liquids as Solvent. Algal Res. 2018, 31, 454−462spa
dcterms.referencesRuiz-Domínguez, M. C.; Jáuregui, M.; Medina, E.; Jaime, C.; Cerezal, P. Rapid Green Extractions of C-Phycocyanin from Arthrospira maxima for Functional Applications. Appl. Sci. 2019, 9, 1987.spa
dcterms.referencesMogany, T.; Swalaha, F. M.; Kumari, S.; Bux, F. Elucidating the Role of Nutrients in C-Phycocyanin Production by the Halophilic Cyanobacterium Euhalothece sp. J. Appl. Phycol. 2018, 30, 2259−2271.spa
dcterms.referencesKumar Saini, D.; Yadav, D.; Pabbi, S.; Chhabra, D.; Shukla, P. Phycobiliproteins from Anabaena variabilis CCC421 and Its Production Enhancement Strategies Using Combinatory Evolutionary Algorithm Approach. Bioresour. Technol. 2020, 309, 123347.spa
dcterms.referencesXing, W.; Lusan, L. Effects of the different nitrogen, phosphorus and carbon source on the growth and glycogen reserves in Synechocystis and Anabaena. Afr. J. Microbiol. Res. 2013, 7, 2820− 2827.spa
dcterms.referencesRastogi, R. P.; Sonani, R. R.; Madamwar, D. Physico-Chemical Factors Affecting the in Vitro Stability of Phycobiliproteins from Phormidium rubidum A09DM. Bioresour. Technol. 2015, 190, 219− 226.spa
dcterms.referencesAbd El-Baky, H. H.; El-Baroty, G. S. Characterization and Bioactivity of Phycocyanin Isolated from Spirulina maxima Grown under Salt Stress. Food Funct. 2012, 3, 381−388.spa
dcterms.referencesMaza, L. D. L. Á . R.; Guevara, M. Á .; Gómez, B. J.; ArredondoVega, B.; Cortez, R.; Licet, B. Produccion de pigmentos procedentes ́ de Arthrospira maxima cultivada en fotobiorreactores. Rev. Colomb. Biotecnol. 2017, 19, 108−114.spa
dcterms.referencesXie, Y.; Jin, Y.; Zeng, X.; Chen, J.; Lu, Y.; Jing, K. Fed-Batch Strategy for Enhancing Cell Growth and C-Phycocyanin Production of Arthrospira (Spirulina) platensis under Phototrophic Cultivation. Bioresour. Technol. 2015, 180, 281−287.spa
dcterms.referencesHaddad, M. F.; Dayioglu, T.; Yaman, M.; Nalbantoglu, B.; Cakmak, T. Long-Term Diazotrophic Cultivation of Trichormus sp. IMU26: Evaluation of Physiological Changes Related to Elevated Phycobiliprotein Content. J. Appl. Phycol. 2020, 32, 881−888.spa
dcterms.referencesPlackett, R. L.; Burman, J. P. The design of optimum multifactorial experiments. Biometrika 1946, 33, 305−325.spa
dcterms.referencesBennett, A.; Bogorad, L. Complementary Chromatic Adaptation in a Filamentous Blue-Green Alga. J. Cell Biol. 1973, 58, 419−435.spa
dcterms.referencesPatil, G.; Chethana, S.; Sridevi, A. S.; Raghavarao, K. S. M. S. Method to Obtain C-Phycocyanin of High Purity. J. Chromatogr. A 2006, 1127, 76−81.spa
dc.identifier.doi10.1021/acsomega.0c04665
dc.relation.citationeditionVol. 6, No. 16 (2021)spa
dc.relation.citationendpage10536spa
dc.relation.citationissue16 (2021)spa
dc.relation.citationstartpage10527spa
dc.relation.citationvolume6spa
dc.relation.citesAntonio Zuorro, Angela G. Leal-Jerez, Leidy K. Morales-Rivas, Sandra O. Mogollón-Londoño, Edwar M. Sanchez-Galvis, Janet B. García-Martínez, and Andrés F. Barajas-Solano ACS Omega 2021 6 (16), 10527-10536 DOI: 10.1021/acsomega.0c04665
dc.relation.ispartofjournalACS Omegaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

2021 The Authors. Published by American Chemical Society
Excepto si se señala otra cosa, la licencia del ítem se describe como 2021 The Authors. Published by American Chemical Society