Mostrar el registro sencillo del ítem

dc.contributor.authorGelves Diaz, John Freddy
dc.contributor.authorDorkis, L.
dc.contributor.authorFourre, E.
dc.contributor.authorBatiot-Dupeyrat, C.
dc.date.accessioned2021-12-08T20:13:54Z
dc.date.available2021-12-08T20:13:54Z
dc.date.issued2018-02
dc.identifier.issn2305-8269
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/1750
dc.description.abstractOxygenated compounds were obtained from methane and carbon dioxide using the unconventional activation by dielectric barrier discharge plasma. The process was performed using a multiphase feed composed of methane, liquid water and carbon dioxide as oxidizing agent. The effect of the CH4/CO2 ratio as well as the flow of liquid water were investigated. The results show that the presence of liquid water in the reactor favors the formation of oxygenated compounds. A direct proportional relation between the flow of water, concentration of methane in the gaseous feed (in the presence of water) and the amount of the produced oxygenates was observed. The highest value of selectivity towards oxygenated compounds was 21.2%, with methanol and formic acid being the main products formed.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherInternational Journal Of Engineering And Applied Sciencesspa
dc.relation.ispartofInternational Journal Of Engineering And Applied Sciences
dc.rightsThe International Journal of Engineering and Applied Sciences (IJEAS) is a peer-reviewed open access engineering and technology journal promoting the discovery, innovation, advancement and dissemination of basic and transitional knowledge in engineering, technology and related disciplineseng
dc.sourcehttps://www.neliti.com/publications/257273/synthesis-of-oxygenated-compounds-from-methane-carbon-dioxide-and-liquid-water-uspa
dc.titleSynthesis of oxygenated compounds from methane, carbon dioxide and liquid water using non-thermal plasmaeng
dc.typeArtículo de revistaspa
dcterms.referencesR.G. Herman, Q. Sun, C. Shi, K. Klier, C.B.Wang, H. Hu, M. Bhasin, (1997) “Development of active oxide catalysts for the direct oxidation of methane to formaldehyde”. Catal. Today, 37(1), pp. 1-14spa
dcterms.referencesA.E. Said, M.M.A. El-Wahab, M.N. Goda. (2016) Selective synthesis of acetone from isopropyl alcohol over active and stable CuO–NiO nanocomposites at relatively low-temperature. Egyptian Journal of Basic and Applied Sciences. 3 (4). pp 357-365.spa
dcterms.referencesX. Liu, X., Y. Liu, Y. Cao. (2015) Formic acid: A versatile renewable reagent for green and sustainable chemical synthesis. Chin. J. Catal. 36(9), pp1461-1475spa
dcterms.referencesK.A.Ali, A.Z.Abdullah, A.R. Mohamed. (2015) Recent development in catalytic technologies for methanol synthesis from renewable sources: A critical review. Renewable Sustainable Energy Rev. 44, pp508-518.spa
dcterms.referencesA.Riaz, G. Zahedi, J.J. Klemeš. (2013 )A review of cleaner production methods for the manufacture of methanol. J. Cleaner Prod. 57, pp19-37spa
dcterms.referencesH.Karaca,, O.Safonova, R. Chambrey, P. Fongarland, A. Khodakov. (2007) Structure and catalytic performance of Pt-promoted alumina-supported cobalt catalysts under realistic conditions of Fischer–Tropsch synthesis. J. Catal. 277, pp14-26spa
dcterms.referencesT. Nozaki, A. Ağıral, S.Yuzawa, J.H. Gardeniers, K. Okazaki. (2011) A single step methane conversion into synthetic fuels using microplasma reactor. Chem. Eng. J. 166(1). pp288-293spa
dcterms.referencesN. R.Foster. (1985) Direct catalytic oxidation of methane to methanol—a review. Appl. Catal. 19(1), pp1-11spa
dcterms.referencesJ.H.Lunsford. (2000) Catalytic conversion of methane to more useful chemicals and fuels: a challenge for the 21st century. Catal. Today. 63(2), pp165-174spa
dcterms.referencesB.Eliasson, U. Kogelschatz. (1991) Nonequilibrium volume plasma chemical processing. IEEE Trans. Plasma Sci. 19(6), pp1063-1077.spa
dcterms.referencesB.Eliasson, W. Egli, U. Kogelschatz. (1994) Modelling of dielectric barrier discharge chemistry. Pure Appl. Chem. 66(6), 1275-1286spa
dcterms.referencesX. Tu, X., B.Verheyde, S. Corthals, S. Paulussen, B.F. Sels. (2011) Effect of packing material on methane activation in a dielectric barrier discharge reactor. Phys. Plasmas. 18, pp80702-80710spa
dcterms.referencesU. Kogelschatz. (2003) Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem. Plasma Process. 23(1), pp1-46.spa
dcterms.referencesY.P. Zhang, Y. Li, Y. Wang, C.J. Liu, B. Eliasson. (2003) Plasma methane conversion in the presence of carbon dioxide using dielectric-barrier discharges. Fuel Process. Technol. 83(1), pp101-109.spa
dcterms.referencesA.M. Ghorbanzadeh, S.Norouzi, T. Mohammadi. (2005) High energy efficiency in syngas and hydrocarbon production from dissociation of CH4–CO2 mixture in a non-equilibrium pulsed plasma. J. Phys. D: Appl. Phys. 38(20), p3804.spa
dcterms.referencesX.Tao, M. Bai, X. Li, H.Long, S. Shang, Y. Yin, Y., X. Dai. (2011). CH4–CO2 reforming by plasma–challenges and opportunities. Prog. Energy Combust. Sci. 37(2), 113-124.spa
dcterms.referencesSupat, K., S. Chavadej, L.L. Lobban, R.G. Mallinson. (2003). Combined steam reforming and partial oxidation of methane to synthesis gas under electrical discharge. Ind. Eng. Chem. Res. 42(8), pp1654-1661spa
dcterms.referencesM. Khoshtinat, N.A.S. Amin, I. Noshadi. (2010) A review of methanol production from methane oxidation via non-thermal plasma reactor. World Academy of Science, Engineering and Technology. 62. pp354-358.spa
dcterms.referencesA. Indarto. (2008) A review of direct methane conversion to methanol by dielectric barrier discharge. IEEE Trans. Dielectr. Electr. Insul. 15(4), pp1038-1043.spa
dcterms.referencesY.F. Wang, C.H. Tsai, M. Shih, L.T. Hsieh, W.C. Chang. (2005) Direct conversion of methane into methanol and formaldehyde in an RF plasma environment I: a preliminary study. Aerosol Air Qual. Res. 5, pp204-210.spa
dcterms.referencesF.M.Aghamir, N.S. Matin, A.H. Jalili, M.H. Esfarayeni, M.A. Khodagholi, R. Ahmadi. (2004) Conversion of methane to methanol in an ac dielectric barrier discharge. Plasma Sources Sci. Technol. 13(4), 707.spa
dcterms.referencesA.A.Khassin, B. L. Pietruszka, M. Heintze, V.N. Parmon. (2004) Methane oxidation in a dielectric barrier discharge. The impact of discharge power and discharge gap filling. React. Kinet. Catal. Lett. 82(1), pp111-119.spa
dcterms.referencesH. Matsumoto, S. Tanabe, K. Okitsu, Y. Hayashi, S. L. Suib. (2001) Selective Oxidation of Methane to Methanol and Formaldehyde with Nitrous Oxide in a Dielectric-Barrier Discharge− Plasma Reactor. J. Phys. Chem. A. 105(21), pp5304-5308spa
dcterms.referencesA. Ağıral, T.Nozaki, M. Nakase, S. Yuzawa, K. Okazaki, J.H. Gardeniers. (2011) Gas-to-liquids process using multi-phase flow, non-thermal plasma microreactor. Chem. Eng. J. 167(2), pp560-566.spa
dcterms.referencesT.Tsuchiya, S. Iizuka. (2013) Conversion of methane to methanol by a low-pressure steam plasma. J. Environ. Eng. Technol. 2. pp35-39spa
dcterms.references]W. Maqbool, E.S. Lee. (2014) Syngas Production Process Development and Economic Evaluation for Gas‐to‐Liquid Applications. Chem. Eng. Technol. 37(6), pp995-1001.spa
dcterms.referencesL.C. Martins das Neves, A. Converti, T.C. Vessoni Penna. (2009) Biogas production: new trends for alternative energy sources in rural and urban zones. Chem. Eng. Technol. 32(8), pp1147-1153.spa
dcterms.referencesP.M. Cox, R.A. Betts, C.D.Jones, S.A. Spall, I. J. Totterdell. (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature. 408(6809), pp184-187.spa
dcterms.referencesT. Nozaki, A. Hattori, K. Okazaki, K. (2004) Partial oxidation of methane using a microscale non-equilibrium plasma reactor. Catal. Today. 98. pp607-616spa
dcterms.referencesT. Nozaki, S. Kado, A.Hattori, K. Okazaki, N. Muto. (2004) Micro-plasma technology direct methane to methanol in extremely confined environment. Stud. Surf. Sci. Catal. 147. pp 505-510spa
dcterms.referencesT. Nozaki, V. Goujard, S. Yuzawa, S. Moriyama, A. Agiral, K. Okazaki. (2011) Selective conversion of methane to synthetic fuels using dielectric barrier discharge contacting liquid film, J. Phys. D: Appl. Phys. 44 pp 274010-274016spa
dcterms.referencesV. Havran, M.P. Dudukovic, C.S. Lo. (2011) Conversion of methane and carbon dioxide to higher value products. Ind. Eng. Chem. Res. 50(12). pp7089-7100.spa
dcterms.references] V. Goujard, J.M. Tatibouët, C. Batiot-Dupeyrat. (2011) Carbon dioxide reforming of methane using a dielectric barrier discharge reactor: effect of helium dilution and kinetic model. Plasma Chem. Plasma Process. 31(2). pp 315-325.spa
dcterms.referencesA. Indarto, J.W. Choi, H. Lee, H.K. Song. (2006) Effect of additive gases on methane conversion using gliding arc discharge. Energy. 31(14). pp2986-2995.spa
dcterms.referencesJ.G. Wang, C.J. Liu, B. Eliassion. (2004) Density functional theory study of synthesis of oxygenates and higher hydrocarbons from methane and carbon dioxide using cold plasmas. Energy Fuels. 18(1). pp148-153spa
dcterms.referencesN. Seyed-Matin, A.H. Jalili, M.H. Jenab, S.M. Zekordi, A. Afzali, C. Rasouli, A. Zamaniyan. (2010). DC-Pulsed Plasma for Dry Reforming of Methane to Synthesis Gas Plasma Chem. Plasma Process. 30. pp. 333-347spa
dcterms.referencesS. L. Brock, M. Marquez, S. Suib, Y. Hayashi, H. Matsumoto. (1998). Plasma decomposition of CO2 in the presence of metal catalysts. J. Catal. 180, pp225-233spa
dcterms.referencesK. Zhang, U. Kogelschatz, B. Eliasson. (2001) Conversion of greenhouse gases to synthesis gas and higher hydrocarbons. Energy and Fuels. 14, pp398-402,spa
dcterms.referencesQ. Wang, B.H. Yan, Y. Jin, Y. Cheng. (2009) Investigation of dry reforming of methane in a dielectric barrier discharge reactor. Plasma Chem. Plasma process. 29(3), pp217-2228spa
dcterms.referencesL. Fouad, S. Elhazek. (1995) Effect of humidity on positive corona discharge in a three electrode system, J. Electrost. pp21-30spa
dcterms.referencesR. Ono, T. Oda. (2002) Measurement of hydroxyl radicals in pulsed corona discharge. J. Electrost. 55, pp333-342.spa
dcterms.referencesD.W. Larkin, L. L. Lobban, R.G. Mallinson. (2001) The direct partial oxidation of methane to organic oxygenates using a dielectric barrier discharge reactor as a catalytic reactor analog. Catal. Today. 71 pp199-210spa
dcterms.referencesZ. Falkenstein, J.J. Coogan. (1997) Microdischarge behaviour in the silent discharge of nitrogen-oxygen and water-air mixtures, J. Phys. Appl. Phys. 30. p817spa
dcterms.referencesG.A.Olah, A. Goeppert, M; Czaun, M., G.S. Prakash. (2012) Bi-reforming of methane from any source with steam and carbon dioxide exclusively to metgas (CO–2H2) for methanol and hydrocarbon synthesis. J. Am. Chem. Soc. 135, pp648-650.spa
dcterms.referencesC.J.. Liu, G.H.. Xu, T. Wang, (1999) Non-thermal plasma approaches in CO2 utilization, Fuel Processing Technology, 58, pp119–134spa
dcterms.referencesM. Sugasawa, T. Terasawa, S. Futamura. (2010) Additive Effect of Water on the Decomposition of VOCs in Nonthermal Plasma, IEEE trans. Ind. Appl. 46, pp1692-1698spa
dcterms.referencesS. Lovascio, N. Blin-Simiand, L. Magne, F. Jorand, S. Pasquiers. (2015) Experimental Study and Kinetic Modeling for Ethanol Treatment by Air Dielectric Barrier Discharges, Plasma Chemistry and Plasma Processing. 35, pp279–301spa
dcterms.referencesS.P. Bugaev, A.V. Kozyrev, V.A. Kuvshinov, N.S. Sochugov, P.A. Khryapov. (1998) Plasma-Chemical Conversion of Lower Alkanes with Stimulated Condensation of Incomplete Oxidation Products. Plasma Chem. and Plasma Process. 35. pp 279–301spa
dc.publisher.placeNueva Delhi , Indiaspa
dc.relation.citationeditionVol.5 No.2.(2018)spa
dc.relation.citationendpage88spa
dc.relation.citationissue2 (2018)spa
dc.relation.citationstartpage82spa
dc.relation.citationvolume5spa
dc.relation.citesGelves, J. F., Dorkis, L., Fourre, E., & Batiot-Dupeyrat, C. (2018). Synthesis of oxygenated compounds from methane, carbon dioxide and liquid water using non-thermal plasma. International Journal of Engineering and Applied Sciences, 5(2), 257273.
dc.relation.ispartofjournalInternational Journal Of Engineering And Applied Sciencesspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subject.proposalNon-thermal plasmaeng
dc.subject.proposaldielectric barrier dischargeeng
dc.subject.proposalbiogaseng
dc.subject.proposalmethane oxidationeng
dc.subject.proposaloxygenated productseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem