Mostrar el registro sencillo del ítem

dc.contributor.authorBautista-Ruiz, Jorge
dc.contributor.authorCaicedo, Julio
dc.contributor.authorAperador Chaparro, Willian
dc.date.accessioned2021-12-07T21:12:38Z
dc.date.available2021-12-07T21:12:38Z
dc.date.issued2019
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/1731
dc.description.abstractA simultaneous evaluation was done of the wear-corrosion of the coatings of beta-tricalcium phosphate on titanium (Ti) substrate deposits obtained by the magnetron sputtering technique. The characterization was developed by a tribometer system coupled to an electrochemical cell. This system allows the combination of corrosion and friction tests between the surface of the coating and the spherical bone pin. The synergy of the two wear phenomena was characterized, which were monitored by means of the electrochemical response as a function of the value of the friction coefficient. It was determined that the system generates a gradual film accumulation process, followed by an instantaneous loss after a critical period. Additionally, it is concluded that the increase in the coefficient of friction is not immediately followed by the increase in wear rateeng
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherTribology in Industryspa
dc.relation.ispartofTribology in Industry
dc.rightsThis is an open access journal which means that all content is freely available without charge to the user or his/her institution. All papers are licensed under a Creative Commons Attribution- NonCommercial 4.0 International Licenseeng
dc.sourcehttp://www.tribology.rs/journals/2019/2019-1/2019-1-14.htmlspa
dc.titleEvaluation of the wear-corrosion process in beta-tricalcium(β-TCP) films obtained by physical vapor deposition (PVD)eng
dc.typeArtículo de revistaspa
dcterms.referencesC. Prati, M.G. Gandolfi, Calcium silicate bioactive cements: Biological perspectives and clinical applications, Dental Materials, vol. 31, iss. 4, pp. 351-370, 2015, doi: 10.1016/j.dental.2015.01.004spa
dcterms.referencesA.H. Touny, M.M. Saleh, Fabrication of biphasic calcium phosphates nanowhiskers by reflux approach, Ceramics International, vol. 44, iss. 14, pp. 16543-16547, 2018, doi: 10.1016/j.ceramint.2018.06.075spa
dcterms.referencesF.S. Souza, M.J.S. Matos, B.R.L. Galvão, A.F.C. Arapiraca, S.N. da Silva, I.P. Pinheiro, Adsorption of CO2 on biphasic and amorphous calcium phosphates: An experimental and theoretical analysis, Chemical Physics Letters, vol. 714, pp. 143-148, 2019, doi: 10.1016/j.cplett.2018.10.080spa
dcterms.referencesM. Furko, E.D. Bella, M. Fini, C. Balázsi, Corrosion and biocompatibility examination of multi-element modified calcium phosphate bioceramic layers, Materials Science and Engineering: C, vol 95, pp. 381-388, 2019, doi: 10.1016/j.msec.2018.01.010spa
dcterms.referencesB. Gabbasov, M. Gafurov, A. Starshova, D. Shurtakova, F. Murzakhanov, G. Mamin, S. Orlinskii, Conventional, pulsed and high-field electron paramagnetic resonance for studying metal impurities in calcium phosphates of biogenic and synthetic origins, Journal of Magnetism and Magnetic Materials, vol. 470, pp. 109-117, 2019, doi: 10.1016/j.jmmm.2018.02.039spa
dcterms.referencesJ. Xiao, A.V. Rogachev, V.A. Yarmolenko, A.A. Rogachev, Y. Liu, X. Jiang, D. Sun, M.A. Yarmolenko, Formation features, structure and properties of bioactive coatings based on phosphate‑calcium layers, deposited by a low energy electron beam, Surface and Coatings Technology, vol. 359, pp. 6- 15, 2019, doi: 10.1016/j.surfcoat.2018.12. 51spa
dcterms.referencesL. Zhang, C. Zhang, R. Zhang, D. Jiang, Q. Zhu, S. Wang, Extraction and characterization of HA/βTCP biphasic calcium phosphate from marine fish, Materials Letters, vol 236, pp. 680-682, 2019, doi: 10.1016/j.matlet.2018.11.014spa
dcterms.referencesR. Chakraborty, S. Sengupta, P. Saha, K. Das, S. Das, Synthesis of calcium hydrogen phosphate and hydroxyapatite coating on SS316 substrate through pulsed electrodeposition, Materials Science and Engineering: C, vol. 69, pp. 875-883, 2016, doi: 10.1016/j.msec.2016.07.044spa
dcterms.referencesZ. Zhou, J. Ruan, Z. Zhou, X. Shen, Bioactivity of bioresorbable composite based on bioactive glass and poly-L-lactide, Transactions of Nonferrous Metals Society of China, vol. 17, iss. 2, pp. 394-399, 2007, doi: 10.1016/S1003-6326(07)60105-8spa
dcterms.referencesR.M. Castro, L.C.C. Cavaler, F.M. Marques, V.M. Bristot, A.S. Rocha, Comparative of the Tribological Performance of Hydraulic Cylinders Coated by the Process of Thermal Spray HVOF and Hard Chrome Plating, Tribology in Industry, vol. 36, no. 1, pp. 79-89, 2014.spa
dcterms.referencesW. Yi, X. Sun, D. Niu, X. Hu, In vitro bioactivity of 3D Ti-mesh with bioceramic coatings in simulated body fluid, Journal of Asian Ceramic Societies, vol. 2, iss. 3, pp. 210-214, 2014, doi: 10.1016/j.jascer.2014.04.002spa
dcterms.referencesD.M. Miskovic, K. Pohl, N. Birbilis, K.J. Laws, M. Ferry, Formation of a phosphate conversion coating on bioresorbable Mg-based metallic glasses and its effect on corrosion performance, Corrosion Science, vol. 129, pp. 214-225, 2017, doi: 10.1016/j.corsci.2017.10.014spa
dcterms.referencesS. Aktug, I. Kutbay, M. Usta, Characterization and formation of bioactive hydroxyapatite coating on commercially pure zirconium by micro arc oxidation, Journal of Alloys and Compounds, vol 695, pp. 998-1004, 2017, doi: 10.1016/j.jallcom.2016.10.217spa
dcterms.referencesS.V. Dorozhkin, Calcium orthophosphate deposits: Preparation, properties and biomedical applications, Materials Science and Engineering: C, vol. 55, pp. 272-326, 2015, doi: 10.1016/j.msec.2015.05.033spa
dcterms.referencesF. Errassifi, S. Sarda, A. Barroug, A. Legrouri, H. Sfihi, C. Rey, Infrared, Raman and NMR investigations of risedronate adsorption on nanocrystalline apatites, Journal of Colloid and Interface Science, vol. 420, pp. 101-111, 2014, doi: 10.1016/j.jcis.2014.01.017spa
dcterms.referencesB.C. Behera, S.K. Singdevsachan, R.R. Mishra, S.K. Dutta, H.N. Thatoi, Diversity, mechanism and biotechnology of phosphate solubilising microorganism in mangrove—A review, Biocatalysis and Agricultural Biotechnology, vol. 3, iss. 2, pp. 97-110, 2014, doi: 10.1016/j.bcab.2013.09.008spa
dcterms.referencesQ. Zhu, Z. Ablikim, T. Chen, Q. Cai, J. Xia, D. Jiang, S. Wang, The preparation and characterization of HA/β-TCP biphasic ceramics from fish bones, Ceramics International, vol. 43, iss. 15, pp. 12213- 12220, 2017, doi: 10.1016/j.ceramint.2017.06.082spa
dcterms.referencesR.R. Behera, A. Das, D. Pamu, L.M. Pandey, M.R. Sankar, Mechano-tribological properties and in vitro bioactivity of biphasic calcium phosphate coating on Ti-6Al-4V, Journal of the Mechanical Behavior of Biomedical Materials, vol. 86, pp. 143- 157, 2018, doi: 10.1016/j.jmbbm.2018.06.020spa
dcterms.referencesM. Bohner, G. Baroud, A. Bernstein, N. Döbelin, L. Galea, B. Hesse, R. Heuberger, S. Meille, P. Michel, B. von Rechenberg, J. Sague, Howard Seeherman, Characterization and distribution of mechanically competent mineralized tissue in micropores of βtricalcium phosphate bone substitutes, Materials Today, vol. 20, iss. 3, pp. 106-115, 2017, doi.org/10.1016/j.mattod.2017.02.002spa
dcterms.referencesR.R. Behera, A. Das, D. Pamu, L.M. Pandey, M.R. Sankar, Mechano-tribological properties and in vitro bioactivity of biphasic calcium phosphate coating on Ti-6Al-4V, Journal of the Mechanical Behavior of Biomedical Materials, vol. 86, pp. 143- 157, 2018, doi.org/10.1016/j.jmbbm.2018.06.020spa
dcterms.referencesK. Shim, H. Kim, S. Kim, K. Park, Simple surface biofunctionalization of biphasic calcium phosphates for improving osteogenic activity and bone tissue regeneration, Journal of Industrial and Engineering Chemistry, vol. 68, pp. 220-228, 2018, doi: 10.1016/j.jiec.2018.07.048spa
dcterms.referencesC. Damia, D. Marchat, C. Lemoine, N. Douard, V. Chaleix, V. Sol, N. Larochette, D. LogeartAvramoglou, J. Brie, E. Champion, Functionalization of phosphocalcic bioceramics for bone repair applications, Materials Science and Engineering: C, vol. 95, pp. 343-354, 2019, doi.org/10.1016/j.msec.2018.01.008spa
dcterms.referencesH.S. Sofi, R. Ashraf, A. Khan, M.A. Beigh, S. Majeed, F.A. Sheikh, Reconstructing nanofibers from natural polymers using surface functionalization approaches for applications in tissue engineering, drug delivery and biosensing devices, Materials Science and Engineering: C, vol. 94, pp. 1102-1124, 2019, doi: 10.1016/j.msec.2018.10.069spa
dcterms.referencesC. Adlhart, J. Verran, N.F. Azevedo, H. Olmez, M.M. Keinänen-Toivola, I. Gouveia, L.F. Melo, F. Crijns, Surface modifications for antimicrobial effects in the healthcare setting: a critical overview, Journal of Hospital Infection, vol. 99, iss. 3, pp. 239-249, 2018, doi: 10.1016/j.jhin.2018.01.018spa
dcterms.referencesM. Pourbaix, Electrochemical corrosion of metallic biomaterials, Biomaterials, vol. 5, iss. 3, pp. 122- 134, 1984, doi: 10.1016/0142-9612(84)90046-2spa
dcterms.referencesX. Zhao, C. Liu, Efficient removal of heavy metal ions based on the selective hydrophilic channels, Chemical Engineering Journal, vol. 359, pp. 1644- 1651, 2019, doi: 10.1016/j.cej.2018.10.229spa
dcterms.referencesA. Mina, H.H. Caicedo, J.A. Uquillas, W. Aperador, O. Gutiérrez, J.C. Caicedo, Biocompatibility behavior of β–tricalcium phosphate-chitosan coatings obtained on 316L stainless steel, Materials Chemistry and Physics, vol. 175, pp. 68-80, 2016, doi: 10.1016/j.matchemphys.2016.02.070spa
dcterms.referencesQ. Yuan, Y. Huang, D. Liu, M. Chen, Effects of solidification cooling rate on the corrosion resistance of a biodegradable β-TCP/Mg-Zn-Ca composite, Bioelectrochemistry, vol. 124, pp. 93- 104, 2018, doi: 10.1016/j.bioelechem.2018.07.005spa
dcterms.referencesY. He, Y. Zhang, Y. Jiang, R. Zhou, J. Zhang, Microstructure evolution, electrochemical properties and in-vitro properties of Ti-Nb-Zr based biocomposite by hydroxyapatite bioceramic, Journal of Alloys and Compounds, vol. 764, pp. 987-1002, 2018, doi: 10.1016/j.jallcom.2018.06.132spa
dcterms.referencesP. Guzmán, L. Yate, M. Sandoval, J. Caballero, W. Aperador, Characterization of the Micro-Abrasive Wear in Coatings of TaC-HfC/Au for Biomedical Implants, Materials, vol. 10, iss. 8, pp. 842- 849, 2017, doi: 10.3390/ma10080842spa
dcterms.referencesS.R. Paital, N.B. Dahotre, Calcium phosphate coatings for bio-implant applications: Materials, performance factors, and methodologies, Materials Science and Engineering: R: Reports, vol. 66, iss. 1–3, pp. 1-70, 2009, doi: 10.1016/j.mser.2009.05.001spa
dcterms.referencesA.K. Tran, A. Sapkota, J. Wen, J. Li, M. Takei, Linear relationship between cytoplasm resistance and hemoglobin in red blood cell hemolysis by electrical impedance spectroscopy & eightparameter equivalent circuit, Biosensors and Bioelectronics, vol. 119, pp. 103-109, 2018, doi: 10.1016/j.bios.2018.08.012spa
dcterms.referencesW. Piedrahita, J.C. Caicedo, W. Aperador, Tribological and Electrochemical Properties of AISI D3 Steel Coated with Hafnium Carbon Nitride, Tribology in Industry, vol. 40, no. 3, pp. 488-500, 2018, doi: 10.24874/ti.2018.40.03.14spa
dcterms.referencesK.P. Ananth, A.J. Nathanael, S.P. Jose, T.H. Oh, D. Mangalaraj, A.M. Ballamurugan, Controlled electrophoretic deposition of HAp/β-TCP composite coatings on piranha treated 316L SS for enhanced mechanical and biological properties, Applied Surface Science, vol. 353, pp. 189-199, 2015, doi: 10.1016/j.apsusc.2015.06.111spa
dcterms.referencesU. Gbureck, O. Grolms, J.E. Barralet, L.M. Grover, R. Thull, Mechanical activation and cement formation of β-tricalcium phosphate, Biomaterials, vol. 24, iss. 23, pp. 4123-4131, 2003, doi: 10.1016/S0142-9612(03)00283-7spa
dc.identifier.doi10.24874/ti.2019.41.01.14
dc.publisher.placeBelgrado , Serbiaspa
dc.relation.citationeditionVol.41 No.1.(2019)spa
dc.relation.citationendpage133spa
dc.relation.citationissue1 (2019)spa
dc.relation.citationstartpage126spa
dc.relation.citationvolume41spa
dc.relation.citesBautista-Ruiz, J., Caicedo, J. C., & Aperador, W. (2019). Evaluation of the Wear-Corrosion Process in Beta-Tricalcium (β-TCP) Films Obtained by Physical Vapor Deposition (PVD). Tribology in Industry, 41(1).
dc.relation.ispartofjournalTribology in Industryspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.subject.proposalSynergyeng
dc.subject.proposalTricalcium phosphateeng
dc.subject.proposalCorrosioneng
dc.subject.proposalCoefficient of frictioneng
dc.subject.proposalPVDeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem