Mostrar el registro sencillo del ítem

dc.contributor.authorGonzález-Delgado, Angel Darío
dc.contributor.authorBarajas Solano, andres F
dc.contributor.authorPeralta-Ruiz, Yeimmy
dc.date.accessioned2021-12-01T16:07:12Z
dc.date.available2021-12-01T16:07:12Z
dc.date.issued2017-12-07
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/1615
dc.description.abstractMicroalgae has recently been highlighted as source of valuable products including biofuel. The production process of biofuels from microalgae involves mass cultivation, harvesting, deep dewatering, lipid extraction and biofuel conversion. In this work, lipids from microalgae Navicula sp. were obtained using multifunctional process that consists of acid hydrolysis or cellular disruption, oil extraction and in situ transesterification. The effect of alcohol added to produce ethyl and methyl esters on lipid extraction efficiency was evaluated using methanol and ethanol in order to determine the most suitable route for obtaining the high values of lipids and total reducing sugar. The highest lipid extraction efficiency and total reducing sugar (7.72 % and 2.63 mg/ml, respectively) was obtained for methanol. The low lipid extraction efficiency of multifuctional process is due to transesterification of lipids that gradually released into the system. The formation of alkyl esters was confirmed by FTIR with an increase in carbonyl peak as the reaction progressed, thus muntifuctional process reduce cost of alkyl esters production by eliminating the step of lipid extraction by solvent.eng
dc.format.extent9 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherContemporary Engineering Sciencesspa
dc.relation.ispartofContemporary Engineering Sciences ISSN: 1314-7641, 2017 vol:10 fasc: 27 págs: 1319 - 1327, DOI:https://doi.org/10.12988/ces.2017.710143
dc.rights2017 Ángel Darío González-Delgado, Andrés Fernando Barajas-Solano and Yeimmy Yolima Peralta-Ruíz. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.eng
dc.sourcehttp://www.m-hikari.com/ces/ces2017/ces25-28-2017/710143.htmlspa
dc.titleEvaluation of In-Situ Transient Simultaneous Cell Disruption and Transesterification of Microalgaeeng
dc.typeArtículo de revistaspa
dcterms.referencesG. Joshi, J.K. Pandey, S. Rana, Devendra S. Rawat, Challenges and opportunities for the application of biofuel, Renewable and Sustainable Energy Reviews, 79 (2017), 850–866. https://doi.org/10.1016/j.rser.2017.05.185spa
dcterms.referencesY. Xiao, P. He, W. Cheng, Jacqueline Liu, W. Shan, Hua Song, Converting solid wastes into liquid fuel using a novel methanolysis process, Waste Management, 49 (2016), 304–310. https://doi.org/10.1016/j.wasman.2015.12.017spa
dcterms.referencesÁ.D. González-Delgado, Y.Y. Peralta-Ruíz, Thermodynamic Modeling of Microalgae Oil Extraction Using Supercritical Fluids, Contemporary Engineering Sciences, 10 (2017), 503–511. https://doi.org/10.12988/ces.2017.7334spa
dcterms.referencesJ. Roux, H. Lamotte, J. Achard, An Overview of Microalgae Lipid Extraction in a Biorefinery Framework, Energy Procedia, 112 (2017), 680–688. https://doi.org/10.1016/j.egypro.2017.03.1137spa
dcterms.referencesÁ.D. González-Delgado, J.B. García-Martínez, Y.Y. Peralta-Ruíz, Cell Disruption and Lipid Extraction from Microalgae Amphiprora sp . Using Acid Hydrolysis-Solvent Extraction Route, Contemporary Engineering Sciences, 10 (2017), 841–849. https://doi.org/10.12988/ces.2017.78791spa
dcterms.referencesT. Dong, E.P. Knoshaug, P.T. Pienkos, Lieve M.L. Laurens, Lipid recovery from wet oleaginous microbial biomass for biofuel production: A critical review, Applied Energy, 177 (2016), 879–895. https://doi.org/10.1016/j.apenergy.2016.06.002spa
dcterms.referencesD. Fimbres-Olivarria, E. Carvajal-Millan, J.A. Lopez-Elias, Karla Guadalupe Martinez-Robinson, Anselmo Miranda-Baeza, Luis Rafael Martinez-Cordova, Fernando Enriquez-Ocana, Jose Eduardo Valdez-Holguin, Chemical characterization and antioxidant activity of sulfated polysaccharides from Navicula sp., Food Hydrocolloids, 75 (2018), 229–236. https://doi.org/10.1016/j.foodhyd.2017.08.002spa
dcterms.referencesÁ. González-Delgado, J.B. García-Martínez, Y.Y. Peralta-Ruíz, Evaluation of Two Pre-Treatments for Improving Lipid Extraction from Microalgae Navicula sp., Contemporary Engineering Sciences, 10 (2017), 851–859. https://doi.org/10.12988/ces.2017.78792spa
dcterms.referencesH. Guo, H. Chen, L. Fan, A. Linklater, B. Zheng, D. Jiang, W. Qin, Enzymes produced by biomass-degrading bacteria can efficiently hydrolyze algal cell walls and facilitate lipid extraction, Renewable Energy, 109 (2017), 195–201. https://doi.org/10.1016/j.renene.2017.03.025spa
dcterms.referencesC. Wu, Y. Xiao, W. Lin, J. Zhu, H. De la Hoz Siegler, M. Zong, J. Rong, Surfactants assist in lipid extraction from wet Nannochloropsis sp, Bioresource Technology, 243 (2017), 793–799. https://doi.org/10.1016/j.biortech.2017.07.010spa
dcterms.referencesE.M. Mosconi, Maria Azzurra Parsi, S. Poponi, Analysis of the Economic and Application-Related Sustainability of Biofuels-A Case Study, Applied Mathematical Sciences, 8 (2014), 6481–6493. https://doi.org/10.12988/ams.2014.46446spa
dcterms.referencesM. Collota, L. Busi, P. Champagne, F. Romagnoli, G. Tomasoni, W. Mabee, M. Alberti, Comparative LCA of three alternative technologies for lipid extraction in biodiesel from microalgae production, Energy Procedia, 113 (2017), 244–250. https://doi.org/10.1016/j.egypro.2017.04.061spa
dcterms.referencesA. González-Delgado, V. Kafarov, Design of a multifunctional reactor for third generation biofuels production, Chemical Engineering Transactions, 21 (2010), 1297–1302. https://doi.org/10.3303/CET1021217spa
dcterms.referencesE.A. Ehimen, Z.F. Sun, C.G. Carrington, Variables affecting the in situ transesterification of microalgae lipids, Fuel, 89 (2010), 677–684. https://doi.org/10.1016/j.fuel.2009.10.011spa
dcterms.referencesM.B. Johnson, Z. Wen, Production of Biodiesel Fuel from the Microalga Schizochytrium limacinum by Direct Transesterification of Algal Biomass, Energy & Fuels, 23 (2009), 5179–5183. https://doi.org/10.1021/ef900704hspa
dcterms.referencesV. Plata, V. Kafarov, N. Moreno, Optimization of third generation biofuels production: Biodiesel from microalgae oil by homogeneous transesterification, In: 19th International Congress of Chemical and Processspa
dcterms.referencesEngineering, CHISA 2010 and 7th European Congress of Chemical Engineering, ECCE-7, (2010).spa
dcterms.referencesL.M.L. Laurens, E.J. Wolfrum, Feasibility of Spectroscopic Characterization of Algal Lipids: Chemometric Correlation of NIR and FTIR Spectra with Exogenous Lipids in Algal Biomass, BioEnergy Research, 4 (2010), 22–35. https://doi.org/10.1007/s12155-010-9098-yspa
dcterms.referencesH. Liu, S. Jiang, J. Wang, Chao Yang, Hongshuang Guo, Xinjing Wang, Sheng Han, Fatty acid esters: a potential cetane number improver for diesel from direct coal liquefaction, Fuel, 153 (2015), 78–84. https://doi.org/10.1016/j.fuel.2015.02.068spa
dcterms.referencesT.L. Ooi, K.C. Yong, K. Dzulkefly, W.M.Z. Wan Yunus, A.H. Hazimah, Crude glycerine recovery from glycerol residue waste from a palm kernel oil methyl ester plant, Journal of Oil Palm Research, 13 (2001), 16–22.spa
dcterms.referencesT.A. Chimenez, M.H. Gehlen, K. Marabezi, Antonio A.S. Curvelo, Characterization of sugarcane bagasse by autofluorescence microscopy, Cellulose, 21 (2013), 653–664. https://doi.org/10.1007/s10570-013-0135-9spa
dc.identifier.doi10.12988/ces.2017.710143
dc.publisher.placeBulgariaspa
dc.relation.citationeditionVol. 10, No. 27 (2017)spa
dc.relation.citationendpage1327spa
dc.relation.citationissue27 (2017)spa
dc.relation.citationstartpage1319spa
dc.relation.citationvolume10spa
dc.relation.citesGonzalez-Delgado, A. D., Barajas-Solano, A. F. y Peralta-Ruiz, Y. Y. (2017). Evaluation of in-situ transient simultaneous cell disruption and transesterification of microalgae. Contemporary Engineering Sciences, 10(27), 1319–1327. https://doi.org/10.12988/ces.2017.710143
dc.relation.ispartofjournalContemporary Engineering Sciencesspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalMicroalgaeeng
dc.subject.proposalBiofuelseng
dc.subject.proposalLipidseng
dc.subject.proposalCell disruptioneng
dc.subject.proposalTransesterificationeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem