Mostrar el registro sencillo del ítem
Recombinant Anti-Thrombin Production from Saccharomyces Cerevisiae: Large Scale Trends Based on Computational Predictions
dc.contributor.author | Pacheco, S | |
dc.contributor.author | Niño, Lilibeth | |
dc.contributor.author | Gelves, German | |
dc.date.accessioned | 2021-11-27T17:49:56Z | |
dc.date.available | 2021-11-27T17:49:56Z | |
dc.date.issued | 2020-11-04 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/1501 | |
dc.description.abstract | Anti-thrombin III is a protein performing anticoagulant function by preventing coagulation process and currently it is used in critical Covid-19 patients. In the present research, recombinant anti-thrombin production at large scale is simulated using SuperPro Designer. Special emphasis was analysed for the elucidation of required unit operation at industrial scale. Saccharomyces cerevisiae yeast is fed with 50 g/L carbon source together with 1.9 g/L amino acids and 6.7 g/L nitrogenous yeast base. All yields are taken from current references. The process is divided in two stages: upstream and downstream. In upward flow a total 11.2 g/L of biomass is calculated. Subsequently, anti-thrombin extraction and purification strategies are proposed. Interestingly, a purified anti-thrombin protein is obtained at 312 mg/L. Based on the latter, the large scale plant proposed in this research can reach 26 vials/hour produced at a concentration of 250 mg. Also productivity and prefeasibility are evaluated and annual production of 205,920 anti-thrombin vials is calculated. Therefore, each vial has a production cost of 180 USD. Based on the authors knowledge, information regarding antithrombin large scale trends are scarce. That is why this is the motivation of this research to perform a computational estimate for the large scale operations involved for the anti-thrombin production. | eng |
dc.format.extent | 11 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Journal of Physics: Conference Series | spa |
dc.relation.ispartof | Journal of Physics: Conference Series ISSN: 1742-6596, 2020 vol:1655 fasc: N/A págs: 1 - 10, DOI:10.1088/1742-6596/1655/1/012081 | |
dc.rights | Content from this work may be used under the terms of theCreative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd | eng |
dc.source | https://iopscience.iop.org/article/10.1088/1742-6596/1655/1/012081 | spa |
dc.title | Recombinant Anti-Thrombin Production from Saccharomyces Cerevisiae: Large Scale Trends Based on Computational Predictions | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Rosano G and Ceccareli E 2014 Recombinant protein expression in Escherichia coli: advances and challenges Frontiers in Microbiology 5 172 | spa |
dcterms.references | Yalçinkaya D 2017 Recombinant human growth hormone production under double promoters by pichia pastoris Middle East Technical University 1 50 | spa |
dcterms.references | Lara A 2011 Recombinant protein production in Escherichia coli. Revista Mexicana de Ingeniería Química 10(2) 209 | spa |
dcterms.references | Kumar A, Bhandari A, Sarde S and Goswami C 2013 Sequence, phylogenetic and variant analyses of antithrombin III Biochemical and biophysical research communications 440(4) 714 | spa |
dcterms.references | Mallu M, Vemula S and Ronda S 2014 Expression and characterization of recombinant human anti-thrombin in saccharomyces cerevisiae International Journal Pharmacy Pharmaceutical Sciences 6(6) 262 | spa |
dcterms.references | Liumbruno G, Bennardello F, Lattanzio A, Piccoli P and Rossetti G 2009 Recommendations for the use of antithrombin concentrates and prothrombin complex concentrates Blood Transfusion 7(4) 325 | spa |
dcterms.references | Mallu M, Vemula S and Ronda S 2016 Production, purification and characterization of recombinant human antithrombin III by Saccharomyces cerevisiae Electronic Journal of Biotechnology 19(4) 81 | spa |
dcterms.references | Mattanovich D, Sauer M and Gasser B 2014 Yeast biotechnology: teaching the old dog new tricks Microb Cell Fact 13(1) 34 | spa |
dcterms.references | Liu Z, Tyo K, Martínez J, Petranovic D and Nielsen J 2012 Different expression systems for production of recombinant proteins in Saccharomyces cerevisiae Biotechnology and bioengineering 109(5) 1259 | spa |
dcterms.references | Nandy S and Srivastava R 2018 A review on sustainable yeast biotechnological processes and applications Microbiological research 207 83 | spa |
dcterms.references | Mallu M, Vemula S and Ronda S 2016 Purificación cromatográfica en un solo paso eficiente de antitrombina humana recombinante (rhAT) de Saccharomyces cerevisiae Journal of Biotechnology 6(1) 112 | spa |
dcterms.references | Ordoñez C 2017 Evaluación del efecto de Picloramo aplicado en el medio de cultivo a la inducción androgénica in vitro en el cultivo de anteras de yuca (Manihot esculenta Crantz), en el Centro Internacional de Agricultura Tropical (CIAT), Palmira – Valle del Cauca. Universidad Nacional Abierta y a Distancia 1 50 | spa |
dcterms.references | Thieman W and Palladino M 2010 Introducción a la biotecnología Pearson 2da edición 192 | spa |
dcterms.references | Mwambete K, Temu M and Fazleabbas F 2009 Microbiological assessment of commercially available quinine syrup and water for injections in Dar Es Salaam, Tanzania Tropical Journal of Pharmaceutical Research 8(5) 1 | spa |
dcterms.references | Barrett C, Moore H, Yaffe M and Moore E 2020 ISTH interim guidance on recognition and management of coagulopathy in COVID‐19: A comment Journal of Thrombosis and Haemostasis 18(8) 2060 | spa |
dc.identifier.doi | 10.1088/1742-6596/1655/1/012081 | |
dc.publisher.place | Reino Unido | spa |
dc.relation.citationedition | Vol. 1655, 012081 (2020) | spa |
dc.relation.citationendpage | 10 | spa |
dc.relation.citationstartpage | 1 | spa |
dc.relation.citationvolume | 1655 | spa |
dc.relation.cites | Pacheco, S., Niño, L. y Gelves, G. (2020). Recombinant anti-thrombin production from saccharomyces cerevisiae: Large scale trends based on computational predictions. Journal of Physics: Conference Series, 1655, Artículo 012081. https://doi.org/10.1088/1742-6596/1655/1/012081 | |
dc.relation.ispartofjournal | Journal of Physics: Conference Series | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Ambiente y Vida - GIAV [124]