Show simple item record

dc.contributor.authorMendoza Cassere, Daniel
dc.contributor.authorValencia, Guillermo Eliecer
dc.contributor.authorCárdenas-Gutiérrez, Javier Alfonso
dc.date.accessioned2021-11-23T20:34:50Z
dc.date.available2021-11-23T20:34:50Z
dc.date.issued2018-08-18
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/1313
dc.description.abstractThe present work was carried out in order to evaluate the world's scientific production with respect to the topic of biomass, based on articles published from 2007 onwards. The data were obtained from the Web of Science data collection, and analyzed, through the HitsCite metadata processor, within which indicators were highlighted, such as the number of total publications, the countries that publish the most, in different periods of years, to establish the trend graphically and in the future, to be able to predict the behavior that will occur. The results show that of the 874 articles published to date, 168 were published by the United States, which is equivalent to 19.2%, followed by China, Italy and finally the United Kingdom with 65 articles published (7.4%), 64 articles (7.3%) and 56 articles published (6.4%) respectively. In addition, a PEST analysis was developed to analyses the behavior of the number of publications in relation to the political, economic, social and technological fields for each country studied, in order to be able to create means of prediction in the future.eng
dc.format.extent10 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherContemporary Engineering Sciencesspa
dc.relation.ispartofContemporary Engineering Sciences
dc.rights© 2018 Daniel Mendoza Casseres, Guillermo Eliecer Valencia and Javier Cardenas Gutierrez. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.eng
dc.sourcehttp://www.m-hikari.com/ces/ces2018/ces61-64-2018/87317.htmlspa
dc.titleAn integral PEST study of biomass as energy resourceeng
dc.typeArtículo de revistaspa
dcterms.referencesConvención Marco de las Naciones Unidas sobre el Cambio Climático, Acuerdo de París de la Convención Marco de las Naciones Unidas sobre el Cambio Climático, Cop21, Vol. 21930, 2015, 18.spa
dcterms.referencesNaciones Unidas, Protocolo de kyoto de la convención marco de las naciones unidas sobre el cambio climático, Protoc. Kyoto, 61702 (1998), 20.spa
dcterms.referencesM. Mehrpooya, M. Khalili and M. M. M. Sharifzadeh, Model development and energy and exergy analysis of the biomass gasification process (Based on the various biomass sources), Renew. Sustain. Energy Rev., 91 (2018), 869–887. https://doi.org/10.1016/j.rser.2018.04.076spa
dcterms.referencesM. Mosaddek Hossen, A. H. M. Sazedur Rahman, A. S. Kabir, M. M. Faruque Hasan and S. Ahmed, Systematic assessment of the availability and utilization potential of biomass in Bangladesh, Renew. Sustain. Energy Rev., 67 (2017), 94–105. https://doi.org/10.1016/j.rser.2016.09.008spa
dcterms.referencesJ. Wang and Y. Yin, Fermentative hydrogen production using various biomass-based materials as feedstock, Renew. Sustain. Energy Rev., 92 (2018), 284–306. https://doi.org/10.1016/j.rser.2018.04.033spa
dcterms.referencesG. Mao, N. Huang, L. Chen and H. Wang, Research on biomass energy and environment from the past to the future: A bibliometric analysis, Sci. Total Environ., 635 (2018), 1081–1090. https://doi.org/10.1016/j.scitotenv.2018.04.173spa
dcterms.referencesN. Bilandzija, N. Voca, B. Jelcic, V. Jurisic, A. Matin, M. Grubor, T. Kricka, Evaluation of Croatian agricultural solid biomass energy potential, Renew. Sustain. Energy Rev., 93 (2018), 225–230. https://doi.org/10.1016/j.rser.2018.05.040spa
dcterms.referencesM. Hoogwijk, A. Faaij, B. Eickhout, B. de Vries and W. Turkenburg, Potential of biomass energy out to 2100, for four IPCC SRES land-use scenarios, Biomass and Bioenergy, 29 (2005), no. 4, 225–257. https://doi.org/10.1016/j.biombioe.2005.05.002spa
dcterms.referencesC. B. Field, J. E. Campbell and D. B. Lobell, Biomass energy: the scale of the potential resource, Trends Ecol. Evol., 23 (2008), no. 2, 65–72. https://doi.org/10.1016/j.tree.2007.12.001spa
dcterms.referencesD. Macqueen, S. Korhaliller, Bundles of Energy - The Case for Renewable Biomass Energy, iied, 2011.spa
dcterms.referencesV. Menon and M. Rao, Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept, Prog. Energy Combust. Sci., 38 (2012), no. 4, 522–550. https://doi.org/10.1016/j.pecs.2012.02.002spa
dcterms.referencesA. C. Caputo, M. Palumbo, P. M. Pelagagge and F. Scacchia, Economics of biomass energy utilization in combustion and gasification plants: effects of logistic variables, Biomass and Bioenergy, 28 (2005), no. 1, 35–51. https://doi.org/10.1016/j.biombioe.2004.04.009spa
dcterms.referencesT. Sigsgaard, Bertil Forsberg, Isabella Annesi-Maesano, Anders Blomberg, Anette Bølling, Christoffer Boman, Jakob Bønløkke, Michael Brauer, Nigel Bruce, Marie-Eve Héroux, Maija-Riitta Hirvonen, Frank Kelly, Nino Künzli et al., Health impacts of anthropogenic biomass burning in the developed world, European Respiratory Journal, 46 (2015), 1577-1588. https://doi.org/10.1183/13993003.01865-2014spa
dcterms.referencesD. H. Schwela, J. G. Goldammer, L. H. Morawska and O. Simpson, FOR, 1998.spa
dcterms.referencesWorld Healt Organization, VEGETATION FIRES - Technical Hazard Sheet - Natural disaster profiles. [Online]. Available: http://www.who.int/hac/techguidance/ems/vegetation_fires/en/ [Accessed: 22-Jul-2018].spa
dcterms.referencesUnion of Concerned Scientist Science for a Healtly Planet and Safer World, How Biopower Works, 2015. [Online]. Available: https://www.ucsusa.org/clean_energy/our-energy-choices/renewableenergy/how-biomass-energy-works.html [Accessed: 20-Jul-2018].spa
dcterms.referencesU. K. Mirza, N. Ahmad and T. Majeed, An overview of biomass energy utilization in Pakistan, Renew. Sustain. Energy Rev., 12 (2008), no. 7, 1988– 1996. https://doi.org/10.1016/j.rser.2007.04.001spa
dcterms.referencesA. Demirbas, Importance of biomass energy sources for Turkey, Energy Policy, 36 (2008), no. 2, 834–842. https://doi.org/10.1016/j.enpol.2007.11.005spa
dcterms.referencesD. O. Hall, Biomass energy, Energy Policy, 19 (1991), no. 8, 711–737. https://doi.org/10.1016/0301-4215(91)90042-mspa
dcterms.referencesI. Dafnomilis, M. B. Duinkerken, M. Junginger, G. Lodewijks and D. L. Schott, Optimal equipment deployment for biomass terminal operations, Transp. Res. Part E Logist. Transp. Rev., 115 (2018), 147–163. https://doi.org/10.1016/j.tre.2018.05.001spa
dcterms.referencesH2O Renovables, Ventajas medioambientales del uso de biomasa. [Online]. Available: http://www.h2orenovables.com/ventajas-medioambientales-del-uso-debiomasaspa
dcterms.referencesH. Q. Nguyen, A. M. Aris and B. Shabani, PEM fuel cell heat recovery for preheating inlet air in standalone solar-hydrogen systems for telecommunication applications: An exergy analysis, Int. J. Hydrogen Energy, 41 (2016), no. 4, 2987–3003. https://doi.org/10.1016/j.ijhydene.2015.12.108spa
dcterms.referencesS. V. Vassilev, C. G. Vassileva and V. S. Vassilev, Advantages and disadvantages of composition and properties of biomass in comparison with coal: An overview, Fuel, 158 (2015), 330–350. https://doi.org/10.1016/j.fuel.2015.05.050spa
dcterms.referencesT. Bridgwater, A. Lea-Langton, A. Ross and I. Watson, Biomass Conversion Technologies, Greenhouse Gas Balances Bioenergy Systems, Elsevier, 2018, 107–139. https://doi.org/10.1016/b978-0-08-101036- 5.00008-2spa
dcterms.referencesenergiza, China y su política de energías renovables. [Online]. Available: http://www.energiza.org/eolica/117-especial-energias-renovables-en-elmundo/336-china-y-su-politica-de-energias-renovables [Accessed: 22-Jul2018].spa
dcterms.referencesL. Jingjing, Z. Xing, P. DeLaquil and E. D. Larson, Biomass energy in China and its potential, Energy Sustain. Dev., 5 (2001), no. 4, 66–80. https://doi.org/10.1016/s0973-0826(08)60286-0spa
dcterms.referencesV. Pignatelli and V. Alfano, Bioenergy Industry and Markets in Italy, Science, Technology and Innovation, 2018.spa
dc.identifier.doihttps://doi.org/10.12988/ces.2018.87317
dc.publisher.placeBulgariaspa
dc.relation.citationeditionVol.11 No.64.(2018)spa
dc.relation.citationendpage3176spa
dc.relation.citationissue64(2018)spa
dc.relation.citationstartpage3167spa
dc.relation.citationvolume11spa
dc.relation.citesCasseres, D. M., Valencia, G. E., & Gutiérrez, J. C. (2018). An Integral PEST Study of Biomass as Energy Resource.
dc.relation.ispartofjournalContemporary Engineering Sciencesspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalBiomasseng
dc.subject.proposalbiomass energyeng
dc.subject.proposalPEST analysiseng
dc.subject.proposalrenewable energyeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record