dc.contributor.author | Mendoza Cassere, Daniel | |
dc.contributor.author | Valencia, Guillermo Eliecer | |
dc.contributor.author | Cárdenas-Gutiérrez, Javier Alfonso | |
dc.date.accessioned | 2021-11-23T20:34:50Z | |
dc.date.available | 2021-11-23T20:34:50Z | |
dc.date.issued | 2018-08-18 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/1313 | |
dc.description.abstract | The present work was carried out in order to evaluate the world's scientific
production with respect to the topic of biomass, based on articles published from
2007 onwards. The data were obtained from the Web of Science data collection,
and analyzed, through the HitsCite metadata processor, within which indicators
were highlighted, such as the number of total publications, the countries that
publish the most, in different periods of years, to establish the trend graphically
and in the future, to be able to predict the behavior that will occur. The results
show that of the 874 articles published to date, 168 were published by the United
States, which is equivalent to 19.2%, followed by China, Italy and finally the
United Kingdom with 65 articles published (7.4%), 64 articles (7.3%) and 56
articles published (6.4%) respectively. In addition, a PEST analysis was
developed to analyses the behavior of the number of publications in relation to the
political, economic, social and technological fields for each country studied, in
order to be able to create means of prediction in the future. | eng |
dc.format.extent | 10 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Contemporary Engineering Sciences | spa |
dc.relation.ispartof | Contemporary Engineering Sciences | |
dc.rights | © 2018 Daniel Mendoza Casseres, Guillermo Eliecer Valencia and Javier Cardenas Gutierrez. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. | eng |
dc.source | http://www.m-hikari.com/ces/ces2018/ces61-64-2018/87317.html | spa |
dc.title | An integral PEST study of biomass as energy resource | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Convención Marco de las Naciones Unidas sobre el Cambio Climático, Acuerdo de París de la Convención Marco de las Naciones Unidas sobre el Cambio Climático, Cop21, Vol. 21930, 2015, 18. | spa |
dcterms.references | Naciones Unidas, Protocolo de kyoto de la convención marco de las naciones unidas sobre el cambio climático, Protoc. Kyoto, 61702 (1998), 20. | spa |
dcterms.references | M. Mehrpooya, M. Khalili and M. M. M. Sharifzadeh, Model development and energy and exergy analysis of the biomass gasification process (Based on the various biomass sources), Renew. Sustain. Energy Rev., 91 (2018), 869–887. https://doi.org/10.1016/j.rser.2018.04.076 | spa |
dcterms.references | M. Mosaddek Hossen, A. H. M. Sazedur Rahman, A. S. Kabir, M. M. Faruque Hasan and S. Ahmed, Systematic assessment of the availability and utilization potential of biomass in Bangladesh, Renew. Sustain. Energy Rev., 67 (2017), 94–105. https://doi.org/10.1016/j.rser.2016.09.008 | spa |
dcterms.references | J. Wang and Y. Yin, Fermentative hydrogen production using various biomass-based materials as feedstock, Renew. Sustain. Energy Rev., 92 (2018), 284–306. https://doi.org/10.1016/j.rser.2018.04.033 | spa |
dcterms.references | G. Mao, N. Huang, L. Chen and H. Wang, Research on biomass energy and environment from the past to the future: A bibliometric analysis, Sci. Total Environ., 635 (2018), 1081–1090. https://doi.org/10.1016/j.scitotenv.2018.04.173 | spa |
dcterms.references | N. Bilandzija, N. Voca, B. Jelcic, V. Jurisic, A. Matin, M. Grubor, T. Kricka, Evaluation of Croatian agricultural solid biomass energy potential, Renew. Sustain. Energy Rev., 93 (2018), 225–230. https://doi.org/10.1016/j.rser.2018.05.040 | spa |
dcterms.references | M. Hoogwijk, A. Faaij, B. Eickhout, B. de Vries and W. Turkenburg, Potential of biomass energy out to 2100, for four IPCC SRES land-use scenarios, Biomass and Bioenergy, 29 (2005), no. 4, 225–257. https://doi.org/10.1016/j.biombioe.2005.05.002 | spa |
dcterms.references | C. B. Field, J. E. Campbell and D. B. Lobell, Biomass energy: the scale of the potential resource, Trends Ecol. Evol., 23 (2008), no. 2, 65–72. https://doi.org/10.1016/j.tree.2007.12.001 | spa |
dcterms.references | D. Macqueen, S. Korhaliller, Bundles of Energy - The Case for Renewable Biomass Energy, iied, 2011. | spa |
dcterms.references | V. Menon and M. Rao, Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept, Prog. Energy Combust. Sci., 38 (2012), no. 4, 522–550. https://doi.org/10.1016/j.pecs.2012.02.002 | spa |
dcterms.references | A. C. Caputo, M. Palumbo, P. M. Pelagagge and F. Scacchia, Economics of biomass energy utilization in combustion and gasification plants: effects of logistic variables, Biomass and Bioenergy, 28 (2005), no. 1, 35–51. https://doi.org/10.1016/j.biombioe.2004.04.009 | spa |
dcterms.references | T. Sigsgaard, Bertil Forsberg, Isabella Annesi-Maesano, Anders Blomberg, Anette Bølling, Christoffer Boman, Jakob Bønløkke, Michael Brauer, Nigel Bruce, Marie-Eve Héroux, Maija-Riitta Hirvonen, Frank Kelly, Nino Künzli et al., Health impacts of anthropogenic biomass burning in the developed world, European Respiratory Journal, 46 (2015), 1577-1588. https://doi.org/10.1183/13993003.01865-2014 | spa |
dcterms.references | D. H. Schwela, J. G. Goldammer, L. H. Morawska and O. Simpson, FOR, 1998. | spa |
dcterms.references | World Healt Organization, VEGETATION FIRES - Technical Hazard Sheet - Natural disaster profiles. [Online]. Available: http://www.who.int/hac/techguidance/ems/vegetation_fires/en/ [Accessed: 22-Jul-2018]. | spa |
dcterms.references | Union of Concerned Scientist Science for a Healtly Planet and Safer World, How Biopower Works, 2015. [Online]. Available: https://www.ucsusa.org/clean_energy/our-energy-choices/renewableenergy/how-biomass-energy-works.html [Accessed: 20-Jul-2018]. | spa |
dcterms.references | U. K. Mirza, N. Ahmad and T. Majeed, An overview of biomass energy utilization in Pakistan, Renew. Sustain. Energy Rev., 12 (2008), no. 7, 1988– 1996. https://doi.org/10.1016/j.rser.2007.04.001 | spa |
dcterms.references | A. Demirbas, Importance of biomass energy sources for Turkey, Energy Policy, 36 (2008), no. 2, 834–842. https://doi.org/10.1016/j.enpol.2007.11.005 | spa |
dcterms.references | D. O. Hall, Biomass energy, Energy Policy, 19 (1991), no. 8, 711–737. https://doi.org/10.1016/0301-4215(91)90042-m | spa |
dcterms.references | I. Dafnomilis, M. B. Duinkerken, M. Junginger, G. Lodewijks and D. L. Schott, Optimal equipment deployment for biomass terminal operations, Transp. Res. Part E Logist. Transp. Rev., 115 (2018), 147–163. https://doi.org/10.1016/j.tre.2018.05.001 | spa |
dcterms.references | H2O Renovables, Ventajas medioambientales del uso de biomasa. [Online]. Available: http://www.h2orenovables.com/ventajas-medioambientales-del-uso-debiomasa | spa |
dcterms.references | H. Q. Nguyen, A. M. Aris and B. Shabani, PEM fuel cell heat recovery for preheating inlet air in standalone solar-hydrogen systems for telecommunication applications: An exergy analysis, Int. J. Hydrogen Energy, 41 (2016), no. 4, 2987–3003. https://doi.org/10.1016/j.ijhydene.2015.12.108 | spa |
dcterms.references | S. V. Vassilev, C. G. Vassileva and V. S. Vassilev, Advantages and disadvantages of composition and properties of biomass in comparison with coal: An overview, Fuel, 158 (2015), 330–350. https://doi.org/10.1016/j.fuel.2015.05.050 | spa |
dcterms.references | T. Bridgwater, A. Lea-Langton, A. Ross and I. Watson, Biomass Conversion Technologies, Greenhouse Gas Balances Bioenergy Systems, Elsevier, 2018, 107–139. https://doi.org/10.1016/b978-0-08-101036- 5.00008-2 | spa |
dcterms.references | energiza, China y su política de energías renovables. [Online]. Available: http://www.energiza.org/eolica/117-especial-energias-renovables-en-elmundo/336-china-y-su-politica-de-energias-renovables [Accessed: 22-Jul2018]. | spa |
dcterms.references | L. Jingjing, Z. Xing, P. DeLaquil and E. D. Larson, Biomass energy in China and its potential, Energy Sustain. Dev., 5 (2001), no. 4, 66–80. https://doi.org/10.1016/s0973-0826(08)60286-0 | spa |
dcterms.references | V. Pignatelli and V. Alfano, Bioenergy Industry and Markets in Italy, Science, Technology and Innovation, 2018. | spa |
dc.identifier.doi | https://doi.org/10.12988/ces.2018.87317 | |
dc.publisher.place | Bulgaria | spa |
dc.relation.citationedition | Vol.11 No.64.(2018) | spa |
dc.relation.citationendpage | 3176 | spa |
dc.relation.citationissue | 64(2018) | spa |
dc.relation.citationstartpage | 3167 | spa |
dc.relation.citationvolume | 11 | spa |
dc.relation.cites | Casseres, D. M., Valencia, G. E., & Gutiérrez, J. C. (2018). An Integral PEST Study of Biomass as Energy Resource. | |
dc.relation.ispartofjournal | Contemporary Engineering Sciences | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.subject.proposal | Biomass | eng |
dc.subject.proposal | biomass energy | eng |
dc.subject.proposal | PEST analysis | eng |
dc.subject.proposal | renewable energy | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |