dc.contributor.author | Prada Botia, Gaudy Carolina | |
dc.contributor.author | Hurtado-Figueroa, Oswaldo | |
dc.contributor.author | Cárdenas-Gutiérrez, Javier Alfonso | |
dc.date.accessioned | 2021-11-18T16:54:58Z | |
dc.date.available | 2021-11-18T16:54:58Z | |
dc.date.issued | 2018-12-07 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/1090 | |
dc.description.abstract | A comparative analysis was performed with regarding the compression resistance of a conventional concrete mixture and its experimental addition of 5, 10 and 15% of fly ash with respect to the volume of its fine aggregate. The fly ash came from the thermoelectric Termotasajero located in the city of Cucuta in the Norte de Santander Department, Colombia, the previous studies performed on fly ash by the thermoelectric laboratories were useful as a reference to classify the ash. The results obtained in the compression tests for the experimental mixtures were compared to the results of the conventional concrete, where a superiority in the resistance of the experimental mixtures in early stages (7 days) was evidenced. Regarding tests performed on day 14 a minimum difference when comparing the mixtures was noted. The resistance test performed on day 28 showed superiority on the conventional mixture with a 2.03 Megapascals advantage with respect to the strengths of the experimental mixes. | eng |
dc.format.extent | 05 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Journal of Physics: Conference Series | spa |
dc.relation.ispartof | Journal of Physics: Conference Series | |
dc.rights | © Copyright 2021 IOP Publishing | eng |
dc.source | https://iopscience.iop.org/article/10.1088/1742-6596/1126/1/012037/meta | spa |
dc.title | Verification of compression resistance between a conventional concrete and its addition of 5, 10 and 15% in volume of fly ash replacing fine aggregate | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Castillo Lara R, Antoni M, Alujas Díaz A, Scrivener K and Martirena Hernández J F 2011 Rev. Ing. Construcción 26 25 | spa |
dcterms.references | Pedraza S P, Pineda Y and Gutiérrez O 2015 Procedia Mater. Sci. 9 496 | spa |
dcterms.references | Tošić N, Marinković S, Pecić N, Ignjatović I and Dragaš J 2018 Constr. Build. Mater. 176 344 | spa |
dcterms.references | Göswein V, Gonçalves A B, Silvestre J D, Freire F, Habert G and Kurda R 2018 Resour. Conserv. Recycl. 137 1 | spa |
dcterms.references | American Society for Testing and Materials (ASTM) 2004 Standard Practice for Making and Curing Concrete Test Specimens in the Field, ASTM C31 (USA: American Society for Testing and Materials) | spa |
dcterms.references | American Society for Testing and Materials (ASTM) 2004 Standard Test Method for compressive Strength of Cylindrical Concrete Specimens, ASTM C39 (USA: American Society for Testing and Materials) | spa |
dcterms.references | Chavez Velazquez C A and Guerra Maestre Y L 2015 Producción, propiedades y usos de los residuos de la combustión del carbón de Termotasajero (Bogotá: Universidad Santo Tomas) | spa |
dcterms.references | Instituto Colombiano de Normas Técnicas y Certificación (INCONTEC) 1966 Cemento portland clasificación y nomenclatura, Norma Técnica Colombiana, NTC30 (Colombia: Instituto Colombiano de Normas Técnicas y Certificación) | spa |
dcterms.references | Instituto Colombiano de Normas Técnicas y Certificación (INCONTEC) 1982 Ingeniería civil y arquitectura. Cemento pórtlan. Especificaciones fisicas y mecanicas, Norma Técnica Colombiana, NTC121 (Colombia: Instituto Colombiano de Normas Técnicas y Certificación) | spa |
dcterms.references | Instituto Colombiano de Normas Técnicas y Certificación (INCONTEC) 1982 Ingeniería civil y arquitectura. Cemento Pórtlan. Especificaciones químicas, Norma Técnica Colombiana, NTC321 (Colombia: Instituto Colombiano de Normas Técnicas y Certificación) | spa |
dcterms.references | Instituto Colombiano de Normas Técnicas y Certificación (INCONTEC) 2007 Concretos. Método de ensayo para el análisis por tamizado de los agregados finos y gruesos, Norma Técnica Colombiana, NTC77 (Colombia: Instituto Colombiano de Normas Técnicas y Certificación) | spa |
dcterms.references | Instituto Colombiano de Normas Técnicas y Certificación (INCONTEC) 1995 Ingeniería civil y arquitectura. Determinación de la masa unitaria y los vacíos entre partículas de agregados, Norma Técnica Colombiana, NTC92 (Colombia: Instituto Colombiano de Normas Técnicas y Certificación) | spa |
dcterms.references | Instituto Colombiano de Normas Técnicas y Certificación (INCONTEC) 1995 Ingeniería civil y arquitectura. Método de ensayo para determinar la densidad y la absoción del agregado grueso, Norma Técnica Colombiana, NTC176 (Colombia: Instituto Colombiano de Normas Técnicas y Certificación) | spa |
dcterms.references | American Society for Testing and Materials (ASTM) 2003 Specification for concrete aggregates, ASTM C33 (USA: American Society for Testing and Materials) | spa |
dcterms.references | Instituto Colombiano de Normas Técnicas y Certificación (INCONTEC) 2001 Concretos. Agua para la elaboración de concreto, Norma Técnica Colombiana, NTC3459 (Colombia: Instituto Colombiano de Normas Técnicas y Certificación) | spa |
dcterms.references | Asociación Colombiana de Ingeniería Sísmica (AIS) 2010 Titulo C Concreto estructural, Reglamento Colombiano de Construcción Sismo Resistente, NSR10 (Colombia: Ministerio de Ambiente, Vivienda y Desarrollo Territorial) | spa |
dcterms.references | American Concrete Institute (ACI) 1997 Standard prectice for selecting proportions normal heavyweight and mass concrete, ACI211-1 (USA: American Concrete Institute) | spa |
dcterms.references | Esquinas A R, Ledesma E F, Otero R, Jiménez J R and Fernández J M 2018 Constr. Build. Mater. 131 114 | spa |
dcterms.references | McCarthy M J, Zheng L, Dhir R K and Tella G 2017 Cem. Concr. Compos. 92 205 | spa |
dc.identifier.doi | https://doi.org/10.1088/1742-6596/1126/1/012037 | |
dc.publisher.place | Reino Unido | spa |
dc.relation.citationedition | Vol.1126 No.1.(2018) | spa |
dc.relation.citationendpage | 5 | spa |
dc.relation.citationissue | 1(2018) | spa |
dc.relation.citationstartpage | 1 | spa |
dc.relation.citationvolume | 1126 | spa |
dc.relation.cites | Figueroa, O. H., Gutiérrez, J. C., & Botia, G. P. (2018, November). Verification of compression resistance between a conventional concrete and its addition of 5, 10 and 15% in volume of fly ash replacing fine aggregate. In Journal of Physics: Conference Series (Vol. 1126, No. 1, p. 012037). IOP Publishing. | |
dc.relation.ispartofjournal | Journal of Physics: Conference Series | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |