dc.contributor.author | Ortiz, Luz | |
dc.contributor.author | suarez botello, jean carlos | |
dc.contributor.author | Chaves-Bedoya, Giovanni | |
dc.date.accessioned | 2021-11-15T14:42:44Z | |
dc.date.available | 2021-11-15T14:42:44Z | |
dc.date.issued | 2017-06-13 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/986 | |
dc.description.abstract | La respuesta del crecimiento de las raíces se encuentra mediado por fitorreguladores que participan en todas
las etapas de crecimiento y desarrollo de la planta. Un adecuado sistema radicular garantiza el anclaje y absorción de nutrientes para los procesos metabólicos requeridos en sus etapas fenológicas. Las citoquininas
(CK) y auxinas (AIA), son fitorreguladores que desempeñan un papel importante en el desarrollo del sistema
radicular. Se ha reportado que las hojas de Moringa oleifera son particularmente ricas en zeatina, por lo que
la aplicación de sus extractos puede tener efecto en el desarrollo radicular. Para entender de manera detallada
la respuesta de las raíces al extracto de Moringa oleifera, se utilizó un sistema in vitro con Arabidopsis thaliana
usando dos condiciones experimentales: (A) semillas germinadas directamente en medio MS con aplicación
del extracto de Moringa oleifera a diferentes diluciones y (B) plantas germinadas y crecidas por 8 días en medio MS, sin raíces laterales (RL), transferidas a medios con diferentes diluciones del extracto. Los resultados
obtenidos sugieren que (A) la mejor dilución del extracto básico (KOH 0,05 M) de Moringa oleifera para la
estimulación de la germinación se presentó en las diluciones de 1 mL, 1,5 mL y 2,0 mL, al igual que el tratamiento con trans zeatina ribósido (ZR) con una concentración 60 μM, (B) el extracto básico de Moringa oleifera
en una relación 1.5:0.5 (extracto:KOH 0,05 M), fue el mejor tratamiento para el desarrollo de la raíz principal
(RP) y raíces laterales (RL). Se necesitan estudios adicionales para determinar la validez de estos resultados
en campo | eng |
dc.description.abstract | The root growth response is mediated by hormones that participate in all stages of plant growth and development.
A good root system guarantees anchoring and absorption of nutrients for the metabolic processes required in the
developmental stages. Cytokinins (CK) and auxins (AIA) are hormones that play an important role in the development of the root system. Moringa oleifera has cytokinins, so the application of their extracts can have an effect on
the development of the root system. In order to understand the root response to the Moringa oleifera extract, we
used an in vitro system with Arabidopsis thaliana and two experiment conditions. (A) Seeds germinated directly
in MS medium with application of the Moringa oleifera extract at different dilutions, which determined how the
primary root (PR) growth was affected. (B) Plants were germinated and grown for 8 days in the MS medium, without lateral roots (LR), and transferred to media with different dilutions of the extract. The results showed that
(A) the best dilution of Moringa oleifera base extract (KOH 0.05 M) for the germination stimulation was seen in the
dilutions of 1 mL, 1.5 mL and 2.0 mL, as well as the treatment with trans Zeathine riboside (ZR) with a concentration of 60 μM, and (B) the basic extract of Moringa oleifera in a ratio of 1.5: 0.5 (extract: KOH 0.05 M) was the
best treatment for the development of the primary root (PR) and lateral roots (LR). Further studies are needed to
determine the validity of these results in field. | eng |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.publisher | Revista Colombiana De Ciencias Hortícolas | spa |
dc.relation.ispartof | Revista Colombiana De Ciencias Hortícolas | |
dc.rights | The copyright of the articles and illustrations are the property of the Revista Colombiana de Ciencias Hortícolas. The editors authorize the use of the contents under the Creative Commons license Attribution-Noncommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). The correct citation of the content must explicitly register the name of the journal, name (s) of the author (s), year, title of the article, volume, number, page of the article and DOI. Written permission is required from publishers to publish more than a short summary of the text or figures. | eng |
dc.source | https://revistas.uptc.edu.co/index.php/ciencias_horticolas/article/view/6131 | spa |
dc.title | Respuesta en el desarrollo radicular deArabidopsis thaliana al extracto foliar de Moringa oleifera | spa |
dc.type | Artículo de revista | spa |
dcterms.references | Ali, Z., S.M.A. Basra, H. Munir, A. Mahmood y S. Yousaf 2011. Mitigation of drought stress in maize by natural and synthetic growth promoters. J. Agric. Soc. Sci. 7, 56-62. | spa |
dcterms.references | Aloni, R., M. Langhans, E. Aloni, E. Dreieicher y C.I. Ullrich 2005. Root-synthesized cytokinin in Arabidopsis is distributed in the shoot by the transpiration stream. J. Exp. Bot. 56, 1535-1544. Doi: 10.1093/jxb/eri148 | spa |
dcterms.references | Anjorin, T.S., P. Ikokoh y S. Okolo 2010. Mineral composition of Moringa oleifera leaves, pods and seeds from two regions in Abuja, Nigeria. Int. J. Agric. Biol. 12, 431-434. | spa |
dcterms.references | Bangerth, F., C. Li y J. Gruber 2000. Mutual interaction of auxin and cytokinins in regulating correlative dominance. Plant Growth Regul. 32, 205-217. Doi: 10.1023/A:1010742721004 | spa |
dcterms.references | Basra, S.M.A., M.N. Iftikhar y I. Afzal 2011. Potential of moringa (Moringa oleifera) leaf extract as priming agent for hybrid maize seeds. Int. J. Agric. Biol. 13, 1006-1010. | spa |
dcterms.references | Coenen, C. y T.L. Lomax 1997. Auxin-cytokinin interactions in higher plants: old problems and new tools. Trends Plant Sci. 2, 351-356. Doi: 10.1016/S1360-1385(97)84623-7 | spa |
dcterms.references | Dolan, L., K. Janmaat, V. Willemsen, P. Linstead, S. Poethig, K. Roberts y B. Scheres 1993. Cellular organisation of the Arabidopsis thaliana root. Development 119, 71-84. | spa |
dcterms.references | Gray, W.M. 2004. Hormonal regulation of plant growth and development. PLoS Biol. 2, E311. Doi: 10.1371/journal.pbio.0020311 | spa |
dcterms.references | Himanen, K., E. Boucheron, S. Vanneste, J. de Almeida Engler, D. Inze y T. Beeckman 2002. Auxin-mediated cell cycle activation during early lateral root initiation. Plant Cell 14, 2339-2351. Doi: 10.1105/tpc.004960 | spa |
dcterms.references | Howell, S.H., S. Lall y P. Che 2003. Cytokinins and shoot development. Trends Plant Sci. 8, 453-459. Doi: 10.1016/S1360-1385(03)00191-2 | spa |
dcterms.references | Miyawaki, K., M. Matsumoto-Kitano y T. Kakimoto. 2004. Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J. 37, 128-138. Doi: 10.1046/j.1365-313X.2003.01945.x | spa |
dcterms.references | Koornneef, M. y D. Meinke 2010. The development of Arabidopsis as a model plant. Plant J. 61, 909-921. Doi: 10.1111/j.1365-313X.2009.04086.x | spa |
dcterms.references | López-Bucio, J., A. Cruz-Ramírez y L. Herrera-Estrella 2003. The role of nutrient availability in regulating root architecture. Curr. Opin. Plant Biol. 6, 280-287. Doi: 10.1016/S1369-5266(03)00035-9 | spa |
dcterms.references | Murashige, T. y F. Skoog 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15, 473-497. Doi: 10.1111/j.1399-3054.1962.tb08052.x | spa |
dcterms.references | Nordstrom, A., P. Tarkowski, D. Tarkowska, R. Norbaek, C. Astot, K. Dolezal y G. Sandberg 2004. Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin-cytokinin- regulated development. Proc. Natl. Acad. Sci. USA 101, 8039-8044. Doi: 10.1073/pnas.0402504101 | spa |
dcterms.references | Oakenfull, E.A., C. Riou-Khamlichi y J.A. Murray. 2002. Plant D-type cyclins and the control of G1 progression. Philos. Trans. R. Soc. Lond. B Biol Sci. 357, 749- 760. Doi: 10.1098/rstb.2002.1085 | spa |
dcterms.references | Ortiz-Castro, R., M. Martínez-Trujillo, J. López-Bucio, C. Cervantes y Y. Carreón-Abud 2009. Restauración del crecimiento radical por nutrimentos inorgánicos en Arabidopsis thaliana L. expuesta a cromo. Terra Latinoam. 27, 97-103. | spa |
dcterms.references | Ortiz-Rojas, L.Y. y V.J. Flórez 2008. Comparación cuantitativa de ácido abscísico y citoquininas en la tuberización de Solanum tuberosum L. y Solanum phureja Juz. et Buk. Agron. Colomb. 26, 32-39. | spa |
dcterms.references | Peret, B., B. De Rybel, I. Casimiro, E. Benkova, R. Swarup, L. Laplaze, T. Beeckman y M.J. Bennett 2009. Arabidopsis lateral root development: an emerging story. Trends Plant Sci. 14, 399-408. Doi: 10.1016/j.tplants.2009.05.002 | spa |
dcterms.references | Rahayu, Y.S., P. Walch-Liu, G. Neumann, V. Römheld, N. Von Wirén y F. Bangerth 2005. Root-derived cytokinins as long-distance signals for NO3 induced stimulation of leaf growth. J Exp. Bot. 56, 1143-1152. Doi: 10.1093/jxb/eri107 | spa |
dcterms.references | Sato, A. y K. Miura 2011. Root architecture remodeling induced by phosphate starvation. Plant Signal Behav. 6, 1122-1126. Doi: 10.4161/psb.6.8.15752 | spa |
dcterms.references | Tanaka, M., K. Takei, M. Kojima, H. Sakakibara y H. Mori 2006. Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. Plant J. 45, 1028- 1036. Doi: 10.1111/j.1365-313X.2006.02656.x | spa |
dcterms.references | Woodward, A.W. y B. Bartel. 2005. Auxin: regulation, action, and interaction. Ann. Bot. 95, 703-735. Doi: 10.1093/aob/mci083 | spa |
dc.identifier.doi | https://doi.org/10.17584/rcch.2017v11i1.6131 | |
dc.relation.citationedition | Vol.11 No.1.(2017) | spa |
dc.relation.citationendpage | 199 | spa |
dc.relation.citationissue | 1 (2017) | spa |
dc.relation.citationstartpage | 193 | spa |
dc.relation.citationvolume | 11 | spa |
dc.relation.cites | Ortiz-Rojas, L. Y., Suárez-Botello, J. C., & Chaves-Bedoya, G. (2017). Response in root development of Arabidopsis thaliana to leaf extract of Moringa oleifera. Revista Colombiana de Ciencias Hortícolas, 11(1), 193–199. https://doi.org/10.17584/rcch.2017v11i1.6131 | |
dc.relation.ispartofjournal | Revista Colombiana De Ciencias Hortícolas | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) | spa |
dc.subject.proposal | arquitectura radicular | spa |
dc.subject.proposal | citoquininas | spa |
dc.subject.proposal | raíz primaria | spa |
dc.subject.proposal | raíces laterales | spa |
dc.subject.proposal | root architecture | eng |
dc.subject.proposal | cytokinin | eng |
dc.subject.proposal | primary root | eng |
dc.subject.proposal | lateral roots | eng |
dc.title.translated | Response in root development of Arabidopsis thaliana to leaf extract of Moringa oleifera | |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |