Mostrar el registro sencillo del ítem

dc.contributor.authorVergel-Suarez, Ariadna H.
dc.contributor.authorGarcía-Martinez, Janet
dc.contributor.authorLópez Barrera, German Luciano
dc.contributor.authorUrbina-Suarez, Nestor Andres
dc.contributor.authorBarajas Solano, andres F
dc.date.accessioned2025-02-27T15:53:56Z
dc.date.available2025-02-27T15:53:56Z
dc.date.issued2024-06-24
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/9149
dc.description.abstractThis work aimed to identify the influence of pH, molarity, w/v fraction, extraction time, agitation, and either a sodium (Na2HPO4 ·7H2O-NaH2PO4 ·H2O) or potassium buffer (K2HPO4 -KH2PO4 ) used in the extraction of C-phycoerythrin (C-PE) from a thermotolerant strain of Potamosiphon sp. An experimental design (Minimum Run Resolution V Factorial Design) and a Central Composite Design (CCD) were used. According to the statistical results of the first design, the K-PO4 buffer, pH, molarity, and w/v fraction are vital factors that enhance the extractability of C-PE. The construction of a CCD design of the experiments suggests that the potassium phosphate buffer at pH 5.8, longer extraction times (50 min), and minimal extraction speed (1000 rpm) are ideal for maximizing C-PE concentration, while purity is unaffected by the design conditions. This optimization improves extraction yields and maintains the desired bright purple color of the phycobiliproteineng
dc.format.extent12 Páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherBioTechspa
dc.rightsThis article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).eng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://www.mdpi.com/2673-6284/13/3/21spa
dc.titleInfluence of Critical Parameters on the Extraction of Concentrated C-PE from Thermotolerant Cyanobacteriaeng
dc.typeArtículo de revistaspa
dcterms.referencesDatta, D.; Weiss, E.L.; Wangpraseurt, D.; Hild, E.; Chen, S.; Golden, J.W.; Golden, S.S.; Pokorski, J.K. Phenotypically Complex Living Materials Containing Engineered Cyanobacteria. Nat. Commun. 2023, 14, 4742.spa
dcterms.referencesBabele, P.K.; Srivastava, A.; Young, J.D. Metabolic Flux Phenotyping of Secondary Metabolism in Cyanobacteria. Trends Microbiol. 2023, 31, 1118–1130.spa
dcterms.referencesPistelli, L.; Del Mondo, A.; Smerilli, A.; Corato, F.; Sansone, C.; Brunet, C. Biotechnological Response Curve of the Cyanobacterium Spirulina subsalsa to Light Energy Gradient. Biotechnol. Biofuels Bioprod. 2023, 16, 28.spa
dcterms.referencesThajuddin, N.; Subramanian, G. Cyanobacterial Biodiversity and Potential Applications in Biotechnology. Curr. Sci. Assoc. 2005, 89, 47–57.spa
dcterms.referencesShrivastav, A.; Mishra, S.K.; Mishra, S. Polyhydroxyalkanoate (PHA) Synthesis by Spirulina subsalsa from Gujarat Coast of India. Int. J. Biol. Macromol. 2010, 46, 255–260spa
dcterms.referencesNowruzi, B.; Jalil, B.S.; Metcalf, J.S. Antifungal Screening of Selenium Nanoparticles Biosynthesized by Microcystin-Producing Desmonostoc Alborizicum. BMC Biotechnol. 2023, 23, 41.spa
dcterms.referencesAlotaiby, S.; Zhao, X.; Boesch, C.; Sergeeva, N.N. Sustainable Approach towards Isolation of Photosynthetic Pigments from Spirulina and the Assessment of Their Prooxidant and Antioxidant Properties. Food Chem. 2024, 436, 137653spa
dcterms.referencesAkmukhanova, N.R.; Leong, Y.K.; Seiilbek, S.N.; Konysbay, A.; Zayadan, B.K.; Sadvakasova, A.K.; Sarsekeyeva, F.K.; Bauenova, M.O.; Bolatkhan, K.; Alharby, H.F.; et al. Eco-Friendly Biopesticides Derived from CO2 -Fixing Cyanobacteria. Environ. Res. 2023, 239, 117419spa
dcterms.referencesCastellanos-Estupiñan, M.A.; Carrillo-Botello, A.M.; Rozo-Granados, L.S.; Becerra-Moreno, D.; García-Martínez, J.B.; UrbinaSuarez, N.A.; López-Barrera, G.L.; Barajas-Solano, A.F.; Bryan, S.J.; Zuorro, A. Removal of Nutrients and Pesticides from Agricultural Runoff Using Microalgae and Cyanobacteria. Water 2022, 14, 558.spa
dcterms.referencesMalairaj, S.; Muthu, S.; Gopal, V.B.; Perumal, P.; Ramasamy, R. Qualitative and Quantitative Determination of R-Phycoerythrin from Halymenia Floresia (Clemente) C. Agardh by Polyacrylamide Gel Using Electrophoretic Elution Technique. J. Chromatogr. A 2016, 1454, 120–126spa
dcterms.referencesXiao, C.; Guo, N.; Liang, Z.; Huang, Z.; Li, W.; Xie, M.; Zhao, F. Ultrafast Energy Transfer Dynamics in a Cyanobacterial Light-Harvesting Phycobilisome. Processes 2023, 11, 1656.spa
dcterms.referencesAdir, N. Elucidation of the Molecular Structures of Components of the Phycobilisome: Reconstructing a Giant. Photosynth. Res. 2005, 85, 15–32spa
dcterms.referencesLi, X.; Hou, W.; Lei, J.; Chen, H.; Wang, Q. The Unique Light-Harvesting System of the Algal Phycobilisome: Structure, Assembly Components, and Functions. Int. J. Mol. Sci. 2023, 24, 9733.spa
dcterms.referencesSun, L.; Wang, S.; Gong, X.; Zhao, M.; Fu, X.; Wang, L. Isolation, Purification and Characteristics of R-Phycoerythrin from a Marine Macroalga Heterosiphonia Japonica. Protein Expr. Purif. 2009, 64, 146–154.spa
dcterms.referencesLiu, H. Cyanobacterial Phycobilisome Allostery as Revealed by Quantitative Mass Spectrometry. Biochemistry 2023, 62, 1307–1320.spa
dcterms.referencesMittal, R.; Sharma, R.; Raghavarao, K.S.M.S. Novel Adsorption Approach for the Enrichment of R-Phycoerythrin from Marine Macroalga Gelidium pusillum. Algal Res. 2022, 62, 102605.spa
dcterms.referencesMunier, M.; Dumay, J.; Morançais, M.; Jaouen, P.; Fleurence, J. Variation in the Biochemical Composition of the Edible Seaweed Grateloupia turuturu Yamada Harvested from Two Sampling Sites on the Brittany Coast (France): The Influence of Storage Method on the Extraction of the Seaweed Pigment r-Phycoerythrin. J. Chem. 2013, 2013, 568548.spa
dcterms.referencesWyman, M.; Gregory, R.P.F.; Carr, N.G. Novel Role for Phycoerythrin in a Marine Cyanobacterium, Synechococcus Strain DC2. Science 1985, 230, 818–820.spa
dcterms.referencesBryant, D.A. Phycoerythrocyanin and Phycoerythrin: Properties and Occurrence in Cyanobacteria. J. Gen. Microbiol. 1982, 128, 835–844.spa
dcterms.referencesMcGregor, G.B.; Sendall, B.C. Potamosiphon Australiensis Gen. Nov., Sp Nov. (Oscillatoriales), a New Filamentous Cyanobacterium from Subtropical North-Eastern Australia. Phytotaxa 2019, 387, 77–93.spa
dcterms.referencesVergel-Suarez, A.H.; García-Martínez, J.B.; López-Barrera, G.L.; Barajas-Solano, A.F.; Zuorro, A. Impact of Biomass Drying Process on the Extraction Efficiency of C-Phycoerythrin. BioTech 2023, 12, 30.spa
dcterms.referencesThoisen, C.; Hansen, B.W.; Nielsen, S.L. A Simple and Fast Method for Extraction and Quantification of Cryptophyte Phycoerythrin. MethodsX 2017, 4, 209–213spa
dcterms.referencesTan, H.T.; Yusoff, F.M.; Khaw, Y.S.; Noor Mazli, N.A.I.; Nazarudin, M.F.; Shaharuddin, N.A.; Katayama, T.; Ahmad, S.A. A Review on a Hidden Gem: Phycoerythrin from Blue-Green Algae. Mar. Drugs 2023, 21, 28.spa
dcterms.referencesContreras-Ropero, J.E.; Lidueñez-Ballesteros, V.S.; Rodríguez-Bohórquez, A.D.; García-Martínez, J.B.; Urbina-Suarez, N.A.; López-Barrera, G.L.; Barajas-Solano, A.F.; Bryan, S.J.; Zuorro, A. The Effect of LEDs on Biomass and Phycobiliproteins Production in Thermotolerant Oscillatoria sp. Appl. Sci. 2022, 12, 11664spa
dcterms.referencesSudhakar, M.P.; Jagatheesan, A.; Perumal, K.; Arunkumar, K. Methods of Phycobiliprotein Extraction from Gracilaria crassa and Its Applications in Food Colourants. Algal Res. 2015, 8, 115–120spa
dcterms.referencesMittal, R.; Tavanandi, H.A.; Mantri, V.A.; Raghavarao, K.S.M.S. Ultrasound Assisted Methods for Enhanced Extraction of Phycobiliproteins from Marine Macro-Algae, Gelidium Pusillum (Rhodophyta). Ultrason. Sonochem. 2017, 38, 92–103.spa
dcterms.referencesMittal, R.; Raghavarao, K.S.M.S. Extraction of R-Phycoerythrin from Marine Macro-Algae, Gelidium pusillum, Employing Consortia of Enzymes. Algal Res. 2018, 34, 1–11spa
dcterms.referencesHuschek, G.; Rawel, H.M.; Schweikert, T.; Henkel-Oberländer, J.; Sagu, S.T. Characterization and Optimization of MicrowaveAssisted Extraction of B-Phycoerythrin from Porphyridium purpureum Using Response Surface Methodology and Doehlert Design. Bioresour. Technol. Rep. 2022, 19, 101212spa
dcterms.referencesLi, T.; Xu, J.; Wang, W.; Chen, Z.; Li, C.; Wu, H.; Wu, H.; Xiang, W. A Novel Three-Step Extraction Strategy for High-Value Products from Red Algae Porphyridium purpureum. Foods 2021, 10, 2164spa
dcterms.referencesGarcía, A.B.; Longo, E.; Murillo, M.C.; Bermejo, R. Using a B-Phycoerythrin Extract as a Natural Colorant: Application in Milk-Based Products. Molecules 2021, 26, 297spa
dcterms.references. Fleurence, O.G.J. Contribution of Electrophoresis of Red Algae Seaweeds (Gracilaria sp.) Used as Food Ingredients. Sci. Aliments 1995, 15, 43–48.spa
dcterms.referencesMunier, M.; Jubeau, S.; Wijaya, A.; Morançais, M.; Dumay, J.; Marchal, L.; Jaouen, P.; Fleurence, J. Physicochemical Factors Affecting the Stability of Two Pigments: R-Phycoerythrin of Grateloupia turuturu and B-Phycoerythrin of Porphyridium cruentum. Food Chem. 2014, 150, 400–407.spa
dcterms.referencesGalland-Irmouli, A.V.; Pons, L.; Luçon, M.; Villaume, C.; Mrabet, N.T.; Guéant, J.L.; Fleurence, J. One-Step Purification of R-Phycoerythrin from the Red Macroalga Palmaria palmata Using Preparative Polyacrylamide Gel Electrophoresis. J. Chromatogr. B Biomed. Sci. Appl. 2000, 739, 117–123.spa
dcterms.referencesSenthilkumar, N.; Kurinjimalar, C.; Thangam, R.; Suresh, V.; Kavitha, G.; Gunasekaran, P.; Rengasamy, R. Further Studies and Biological Activities of Macromolecular Protein R-Phycoerythrin from Portieria hornemannii. Int. J. Biol. Macromol. 2013, 62, 107–116.spa
dcterms.referencesLe Guillard, C.; Dumay, J.; Donnay-Moreno, C.; Bruzac, S.; Ragon, J.Y.; Fleurence, J.; Bergé, J.P. Ultrasound-Assisted Extraction of R-Phycoerythrin from Grateloupia turuturu with and without Enzyme Addition. Algal Res. 2015, 12, 522–528. [CrossRef] 36. Harnedy, P.A.; FitzGerald, R.J. Extraction of Protein from the Macroalga Palmaria palmata. LWT-Food Sci. Technol. 2013, 51, 375–382spa
dcterms.referencesAndersen, R.; Berges, J.; Harrison, P.; Watanabe, M. Recipes for Freshwater and Seawater Media. In Algal Culture Techniques, 1st ed.; Elsevier: London, UK, 2005.spa
dcterms.referencesBarajas-Solano, A.F. Optimization of Phycobiliprotein Solubilization from a Thermotolerant Oscillatoria sp. Processes 2022, 10, 836.spa
dcterms.referencesBennett, A.; Bogorad, L. Complementary Chromatic Adaptation in a Filamentous Blue-Green Alga. J. Cell Biol. 1973, 58, 419–435spa
dcterms.referencesPatil, G.; Raghavarao, K.S.M.S. Aqueous Two Phase Extraction for Purification of C-Phycocyanin. Biochem. Eng. J. 2007, 34, 156–164.spa
dcterms.referencesAntelo, F.; Anschau, A.; Costa, J.; Kalil, S. Extraction and Purification of C-Phycocyanin from Spirulina platensis in Conventional and Integrated Aqueous Two-Phase Systems. J. Braz. Chem. Soc. 2010, 21, 921–926.spa
dcterms.referencesXie, J.; Chen, S.; Wen, Z. Effects of Light Intensity on the Production of Phycoerythrin and Polyunsaturated Fatty Acid by Microalga Rhodomonas salina. Algal Res. 2021, 58, 102397.spa
dcterms.referencesLee, M.-C.; Yeh, H.-Y.; Jhang, F.-J.; Lee, P.-T.; Lin, Y.-K.; Nan, F.-H. Enhancing Growth, Phycoerythrin Production, and Pigment Composition in the Red Alga Colaconema sp. Through Optimal Environmental Conditions in an Indoor System. Bioresour. Technol. 2021, 333, 125199.spa
dcterms.referencesTavanandi, H.A.; Mittal, R.; Chandrasekhar, J.; Raghavarao, K.S.M.S. Simple and Efficient Method for Extraction of C-Phycocyanin from Dry Biomass of Arthospira platensis. Algal Res. 2018, 31, 239–251.spa
dcterms.referencesSukwong, P.; Sunwoo, I.Y.; Nguyen, T.H.; Jeong, G.-T.; Kim, S.-K. R-Phycoerythrin, R-Phycocyanin and ABE Production from Gelidium amansii by Clostridium acetobutylicum. Process Biochem. 2019, 81, 139–147.spa
dcterms.referencesJi, L.; Liu, Y.; Luo, J.; Fan, J. Freeze-Thaw-Assisted Aqueous Two-Phase System as a Green and Low-Cost Option for Analytical Grade B-Phycoerythrin Production from Unicellular Microalgae Porphyridium purpureum. Algal Res. 2022, 67, 102831.spa
dcterms.referencesPez Jaeschke, D.; Rocha Teixeira, I.; Damasceno Ferreira Marczak, L.; Domeneghini Mercali, G. Phycocyanin from Spirulina: A Review of Extraction Methods and Stability. Food Res. Int. 2021, 143, 110314.spa
dcterms.referencesLin, J.-Y.; Ng, I.-S. Production, Isolation and Characterization of C-Phycocyanin from a New Halo-Tolerant Cyanobacterium aponinum Using Seawater. Bioresour. Technol. 2021, 342, 125946spa
dcterms.referencesGhosh, T.; Mishra, S. Studies on Extraction and Stability of C-Phycoerythrin from a Marine Cyanobacterium. Front. Sustain. Food Syst. 2020, 4, 102.spa
dcterms.referencesBasheva, D.; Moten, D.; Stoyanov, P.; Belkinova, D.; Mladenov, R.; Teneva, I. Content of Phycoerythrin, Phycocyanin, Alophycocyanin and Phycoerythrocyanin in Some Cyanobacterial Strains: Applications. Eng. Life Sci. 2018, 18, 861–866.spa
dcterms.referencesHemlata; Afreen, S.; Fatma, T. Extraction, Purification and Characterization of Phycoerythrin from Michrochaete and Its Biological Activities. Biocatal. Agric. Biotechnol. 2018, 13, 84–89.spa
dcterms.referencesIsmail, M.M.; El-Fakharany, E.M.; Hegazy, G.E. Purification and Fractionation of Phycobiliproteins from Arthrospira platensis and Corallina officinalis with Evaluating Their Biological Activities. Sci. Rep. 2023, 13, 14270spa
dc.identifier.doi10.3390/biotech13030021
dc.publisher.placeSuizaspa
dc.relation.citationeditionVol.13 No.3 (2024)spa
dc.relation.citationendpage12spa
dc.relation.citationissue3 (2024)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume13spa
dc.relation.citesVergel-Suarez, A.H.; García-Martínez, J.B.; López-Barrera, G.L.; Urbina-Suarez, N.A.; Barajas-Solano, A.F. Influence of Critical Parameters on the Extraction of Concentrated C-PE from Thermotolerant Cyanobacteria. BioTech 2024, 13, 21. https://doi.org/ 10.3390/biotech13030021
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalcyanobacteriaeng
dc.subject.proposalphycobiliproteinseng
dc.subject.proposalNatural colorantseng
dc.subject.proposalbiomass dehydrationeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).
Excepto si se señala otra cosa, la licencia del ítem se describe como This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).