Show simple item record

dc.contributor.authorContreras Ropero, Jefferson Eduardo
dc.contributor.authorBarajas Solano, andres F
dc.contributor.authorGarcía-Martinez, Janet
dc.contributor.authorBarajas Ferreira, Crisóstomo
dc.contributor.authorMachuca Martínez, Fiderman
dc.date.accessioned2025-02-27T15:31:58Z
dc.date.available2025-02-27T15:31:58Z
dc.date.issued2024-07-15
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/9148
dc.description.abstractThe exploration of the biodiversity of cyanobacteria and microalgae holds great promise for obtaining pigments of industrial interest. This study focused on the bioprospecting of these organisms to obtain pigments of industrial interest together with enriched biomass. We investigated the impact of photoperiod and concentration of C/N/P nutrient sources in heterotrophic cultures, controlling specific variables such as light intensity, volume, pH, temperature, air flow and time to produce phycobiliproteins in Arthrospira platensis UTEX1926 and total carotenoids in Scenedesmus sp. using a nonfactorial Plackett‒Burman design in STATISTICA 7.0 software. The biomass concentration was determined by dry weight, while the concentrations of phycocyanin and carotenoids were determined spectrophotometrically at specific wavelengths. Heterotrophic cultures demonstrated superior productivity, with phycocyanin and carotenoids achieving percentages of 7% and 0.4% (w/w), respectively, and an R2 value of 0.99. Among the influential parameters, potassium diphosphate and sodium bicarbonate played pivotal roles in the final deposition of carotenoids and phycocyanin, respectively, yielding concentrations of 96.5 mg/L phycocyanin and 6.5 mg/L carotenoidseng
dc.description.abstractLa exploración de la biodiversidad de cianobacterias y microalgas es muy prometedora para la obtención de pigmentos de interés industrial. Este estudio se centra en la bioprospección de estos organismos para obtener pigmentos de interés industrial junto con biomasa enriquecida. Investigamos el impacto del fotoperiodo y la concentración de fuentes de nutrientes C/N/P en cultivos heterótrofos, controlando variables específicas como la intensidad luminosa, volumen, pH, temperatura, flujo de aire y tiempo para la producción de ficobiliproteínas en Arthrospira platensis UTEX1926 y carotenoides totales en Scenedesmus sp. Empleando un diseño Plackett‒Burman no factorial en el software STATISTICA 7.0. La concentración de biomasa fue determinada por peso seco, mientras que la concentración de ficocianinas y carotenoides fueron determinadas espectrofotométricamente a longitudes de onda específicas. Los cultivos heterótrofos demostraron una productividad superior, alcanzando las ficocianinas y los carotenoides porcentajes del 7% y el 0,4% (% p/p) respectivamente, y un notable valor R2 de 0,99. Entre los parámetros influyentes, el difosfato potásico y el bicarbonato sódico desempeñaron papeles fundamentales en la deposición final de carotenoides y ficocianinas, respectivamente, alcanzando concentraciones de 96,5 mg/L de ficocianinas y 6,5 mg/L de carotenoidesspa
dc.format.extent16 Páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherIngeniería y Competitividadspa
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike4.0 International Licenseeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourcehttp://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-30332024000200014spa
dc.titleProduction of industrial-interest colorants in microalgae and cyanobacteria: leveraging nutrient dynamics and photoperiod optimizationeng
dc.typeArtículo de revistaspa
dcterms.referencesMesquita SDS, Teixeira CMLL, Servulo EFC. Carotenoids: Properties, applications and market. Rev Virtual Quim (Brazil). 2017;9(2):672–688. Disponible en: https://doi. org/10.21577/1984-6835.20170040spa
dcterms.referencesCarocho M, Barreiro MF, Morales P, Ferreira ICFR. Adding molecules to food, pros and cons: a review on synthetic and natural food additives. Compr rev food sci f (Estados Unidos). 2014;13(4):377-399. Disponible en: https://doi.org/10.1111/1541- 4337.12065spa
dcterms.referencesDoguc DK, Aylak F, Ilhan I, Kulac E, Gultekin F. Are there any marked effects of prenatal exposure to food colourings on neurobehaviour and learning process in rat offspring. Nutr Neurosci (Inglaterra). 2015;18(1):12–21. Disponible en: https://doi.org /10.1179/1476830513Y.0000000095.spa
dcterms.referencesKhazi MI, Demirel Z, Dalay MC. Evaluation of growth and phycobiliprotein composition of cyanobacteria isolates cultivated in different nitrogen sources. J Appl Phycol (Países Bajos). 2018;30(3):1513–23. Disponible en: https://doi.org/10.1007/ s10811-018-1398-1spa
dcterms.referencesMulders KJM, Lamers PP, Martens DE, Wijffels RH. Phototrophic pigment production with microalgae: Biological constraints and opportunities. J Phycol (Países Bajos). 2014;50(2):229–42. Disponible en: https://doi.org/10.1111/jpy.12173spa
dcterms.referencesKoller M, Muhr A, Braunegg G. Microalgae as versatile cellular factories for valued products. Algal Res (Países Bajos). 2014;6:52–63. Disponible en: https://doi. org/10.1016/j.algal.2014.09.002spa
dcterms.referencesWijffels RH, Kruse O, Hellingwerf KJ. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr Opin Biotechnol (Inglaterra). 2013;24(3):405–13. Disponible en: https://doi.org/10.1016/j.copbio.2013.04.004.spa
dcterms.referencesHu, J., Nagarajan, D., Zhang, Q., Chang, J. S., & Lee, D. H. Heterotrophic cultivation of microalgae for pigment production: A review. Biotechnology Advances, 2018;36(1), 54–67. https://doi.org/10.1016/j.biotechadv.2017.09.009spa
dcterms.referencesFlórez-Miranda, L., Cañizares-Villanueva, R. O., Melchy-Antonio, O., Martínez‐ Jerónimo, F., & Flores-Ortíz, C. M. Two stage heterotrophy/photoinduction culture of Scenedesmus incrassatulus : potential for lutein production. Journal of Biotechnology. 2017;62, 67–74. https://doi.org/10.1016/j.jbiotec.2017.09.002spa
dcterms.referencesPagels, F., Salvaterra, D., Amaro, H. M., & Guedes, A. C.. Pigments from microalgae. In Elsevier eBooks, 2020, 465–492. https://doi.org/10.1016/b978-0-12-818536- 0.00018-xspa
dcterms.referencesBeltrán-Rocha JC, Guajardo-Barbosa C, Quintal IDB, López-Chuken UJ. Biotratamiento de efluentes secundarios municipales utilizando microalgas: Efecto del pH, nutrientes (C, N y P) y enriquecimiento con CO2. Revista de Biologia Marina y Oceanografia. 2017;52(3):417-427. doi:10.4067/s0718-19572017000300001spa
dcterms.referencesGuarin-Villegas E, Remolina-Páez LM, Bermúdez-Castro JP, Mogollón-Londoño SO, Contreras-Ropero JE, García Martínez JB, Barajas-Solano AF. Efecto de la relación carbono/Nitrógeno en la producción de carotenoids en microalgas. Ingeniería y Competitividad. 2020;22(1):1-13. doi:10.25100/iyc.v22i1.8686spa
dcterms.referencesRosales-Loaiza N, Guevara M, Lodeiros C, Morales E. Crecimiento y producción de metabolitos de la cianobacteria marina Synechococcus sp. (Chroococcales) en función de la irradiancia. Revista de Biología Tropical. 2008;56(2):421-429. Disponible en: http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0034- 77442008000200001&lng=en&tlng=es.spa
dcterms.referencesContreras-Ropero JE, Lidueñez-Ballesteros VS, Rodríguez-Bohórquez AD, et al. The Effect of LEDs on Biomass and Phycobiliproteins Production in Thermotolerant Oscillatoria sp. Applied Sciences. 2022;12(22):11664. doi:10.3390/app122211664spa
dcterms.referencesNaranjo-briceño L, Rojas-tortolero D, González H, Torres R. Arthrospira platensis como biofactoría de metabolitos secundarios de interés farmacológico : el ácido pipecólico. Rev Latinoam Biotecnol Ambient y Algal (Mexico). 2010;1(1):64–90. Disponible en: http://www.solabiaa.org/ojs3/index.php/RELBAA/article/view/16.spa
dcterms.referencesHu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, et al. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant Journal (Inglaterra). 2008;54(4):621-639. Disponible en: https://doi. org/10.1111/j.1365-313X.2008.03492.spa
dcterms.referencesMoheimani NR, Borowitzka MA, Isdepsky A, Fon Sing S. Standard methods for measuring growth of algae and their composition. En: Borowitzka MA, Moheimani NR, editores. Algae for Biofuels and Energy. Springer, Dordrecht. 2013; pp. 265-284. Disponible en: http://dx.doi.org/10.1007/978-94-007-5479-9_16.spa
dcterms.referencesPřibyl P, Cepák V, Kaštánek P, Zachleder V. Elevated production of carotenoids by a new isolate of Scenedesmus sp. Algal Res (Países Bajos). 2015;11:22–27. Disponible en: https://doi.org/10.1016/j.algal.2015.05.020.spa
dcterms.referencesChen C, Kao P, Tan C, Show P, Cheah W, Lee W, et al. Using an innovative pH-stat CO2 feeding strategy to enhance cell growth and C-phycocyanin production from Arthrospira platensis. Biochem Eng J (Países Bajos). 2016;112:78-85. Disponible en: https://doi.org/10.1016/j.bej.2016.04.009.spa
dcterms.references. Bennett A, Bogobad L. Complementary chromatic adaptation in a filamentous blue‒ green alga. J Cell Biol (Estados Unidos). 1973;58(2):419–35. Disponible en: https:// doi.org/10.1083/jcb.58.2.419.spa
dcterms.referencesZarrouk C. Contribution à l’étude d’une cyanophycée : influence de divers facteurs physiques et chimiques sur la croissance et la photosynthèse de Arthrospira maxima (Setch et Gardner) Geitler. ed S.L.N.D (francia). 1996;85p.spa
dcterms.referencesAndersen RA, Berges JA, Harrison PJ, Watanabe MM. Recipes for Freshwater and Seawater Media. En: Andersen RA, editor. Algal Culturing Techniques. Springer, Dordrecht. 2005; pp. 429-538.spa
dcterms.referencesStatSoft, INC. STATISTICA. Data analysis software system. 2004. Disponible en: www. statsoft.comspa
dcterms.referencesZhang, X., Yuan, H., Guan, L., Wang, X., Wang, Y., Jiang, Z., Cao, L., & Zhang, X. Influence of photoperiods on microalgae biofilm: photosynthetic performance, biomass yield, and cellular composition. Energies. 2019:12(19), 3724. https://doi. org/10.3390/en12193724spa
dcterms.referencesNiangoran, U., Buso, D., Zissis, G., & Prudhomme, T. Influence of light intensity and photoperiod on energy efficiency of biomass and pigment production of Spirulina (Arthrospira platensis). Oilseeds and Fats, Crops and Lipids/OCL. Oilseeds & Fats Crops and Lipids. 2021;28, 37. https://doi.org/10.1051/ocl/2021025spa
dcterms.referencesVendruscolo, R. G., Fagundes, M. B., Maroneze, M. M., Nascimento, T. C. D., Menezes, C., Barin, J. S., Zepka, L. Q., Jacob‐Lopes, E., & Wagner, R. Scenedesmus obliquus metabolomics: effect of photoperiods and cell growth phases. Bioprocess and Biosystems Engineering. 2019; 42(5), 727–739. https://doi.org/10.1007/s00449-019- 02076-yspa
dcterms.referencesCarvalho AP, Silva SO, Baptista JM, Malcata FX. Light requirements in microalgal photobioreactors: An overview of biophotonic aspects. Appl Microbiol Biotechnol (Alemania). 2011;89(5):1275–88. https://doi.org/10.1007/s00253-010-3047-8.spa
dcterms.referencesRichmond A, Preiss K. The biotechnology of agriculture. Interdiscipl.Sci Rev (Inglaterra). 1980;5:60-69. https://doi.org/10.1179/030801880789767891.spa
dcterms.referencesPinchasov-Grinblat Y, Hoffman R, Dubinsky Z. El efecto de la fotoaclimatación sobre la eficiencia del almacenamiento de energía fotosintética, determinada por la fotoacústica. ICESspa
dcterms.referencesWoodall AA, Lee SW-M, Weesie RJ, Jackson MJ, Britton G. Oxidación de carotenoides por radicales libres: relación entre estructura y reactividad. Biochim Biophys Acta Gen Subj (Países Bajos). 1997;1336(1):33–42. https://doi.org/10.1016/ S0304-4165(97)00006-8.spa
dcterms.references. Hemlata, Fatma, T. Screening of Cyanobacteria for Phycobiliproteins and Effect of Different Environmental Stress on Its Yield. Bull Environ Contam Toxicol. 2009;83:509–515. https://doi.org/10.1007/s00128-009-9837-yspa
dcterms.referencesFigueroa-Torres, G. M., Pittman, J. K., & Theodoropoulos, C. Optimisation of microalgal cultivation via nutrient-enhanced strategies: the biorefinery paradigm. Biotechnology for Biofuels. 2021;14(1). https://doi.org/10.1186/s13068-021-01912-2spa
dcterms.referencesP, Soundarapandian & Vasanthi, B. Effects of Chemical Parameters on Arthrospira platensis Biomass Production: Optimized Method for Phycocyanin Extraction. Int J Zool Res (India). 2008;4:1-11. https://doi.org/10.3923 / ijzr.2008.1.11.spa
dcterms.referencesDel Pilar Sánchez‐Saavedra M, Voltolina D. The growth rate, biomass production and composition of Chaetoceros sp. grown with different light sources. Aquacultural Engineering. 2006;35(2):161-165. doi:10.1016/j.aquaeng.2005.12.001spa
dcterms.referencesFan, X., Cao, X., Chu, Y., Wu, P., & Xue, S. The Light Regime Effect on Triacylglycerol Accumulation of Isochrysis zhangjiangensis. Journal of Ocean University of China. 2019; 18(2), 474–480. https://doi.org/10.1007/s11802-019-3691-2spa
dcterms.references. Chen, F., Zhang, Y. & Guo, S. Crecimiento y formación de ficocianina de Arthrospira platensis en cultivo fotoheterotrófico. Biotechnol Lett (Países Bajos). 1996;18:603-608. https://doi. org/10.1007/BF00140211spa
dcterms.referencesLohr M, Schwender J, Polle JEW. Isoprenoid biosynthesis in eukaryotic phototrophs: A spotlight on algae. Plant Sci (Irlanda). 2012;185–186:9–22. https://doi. org/10.1016/j.plantsci.2011.07.018spa
dcterms.referencesKumari A, Pathak AK, Guria C. Cost-Effective Cultivation of Arthrospira platensis Using NPK Fertilizer. Agricultural Research. 2015;4(3):261-271. doi:10.1007/s40003- 015-0168-4spa
dcterms.referencesZhang P, Sun Q, Ye D, Lian S. Effects of different bicarbonate on Arthrospira in CO2 absorption and microalgae conversion hybrid system. Frontiers In Bioengineering And Biotechnology. 2023;10. doi:10.3389/fbioe.2022.1119111spa
dcterms.references. Manirafasha E, Murwanashyaka T, Ndikubwimana T, et al. Enhancement of cell growth and phycocyanin production in Arthrospira (Arthrospira) platensis by metabolic stress and nitrate fed-batch. Bioresource Technology. 2018;255:293-301. doi:10.1016/j.biortech.2017.12.068spa
dcterms.referencesAkgül, F., & Akgül, R. Combined effect of nitrogen and phosphorus on growth and biochemical composition of Tetradesmus obliquus (Turpin) M.J. Wynne. International Journal of Secondary Metabolite. 2022;9(4),525–537. https://doi. org/10.21448/ijsm.1102592 42. Coulombier, N., Nicolau, É., Déspa
dcterms.referencesCoulombier, N., Nicolau, É., Déan, L. L., Barthelemy, V., Schreiber, N., Brun, P., Lebouvier, N., & Jauffrais, T. Effects of Nitrogen Availability on the Antioxidant Activity and Carotenoid Content of the Microalgae Nephroselmis sp. Marine Drugs. 2020;18(9), 453. https://doi.org/10.3390/md18090453spa
dcterms.referencesYaakob, M. A., Mohamed, R. M. S. R., Gokare, R. A., & Rao, A. R. (2021). Influence of nitrogen and phosphorus on microalgal growth, biomass, lipid, and fatty acid production: an overview. Cells. 2021;10(2), 393. https://doi.org/10.3390/ cells10020393spa
dcterms.referencesChia MA, Lombardi AT, Da Graça Gama Melão M. Growth and biochemical composition of Chlorella vulgaris in different growth media. Anais Da Academia Brasileira de Ciencias. 2013;85(4):1427-1438. doi:10.1590/0001-3765201393312spa
dc.identifier.doi10.25100/iyc. v26i2.13679
dc.publisher.placeCali- Colombiaspa
dc.relation.citationeditionVol.26 No.2 (2024)spa
dc.relation.citationendpage16spa
dc.relation.citationissue2 (2024)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume26spa
dc.relation.citesContreras-Ropero, J.E., Barajas-Solano, A.F., García-Martínez, J.B., Barajas-Ferreira, C., Machuca-Martínez, F. Production of industrial-interest colorants in microalgae and cyanobacteria: leveraging nutrient dynamics and photoperiod optimization. Ingeniería y Competitividad, 2024, 26(2) e-21413679
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.subject.proposalphycobiliproteinseng
dc.subject.proposalCarotenoidseng
dc.subject.proposalArthrospira platensis UTEX1926eng
dc.subject.proposalScenedesmus speng
dc.subject.proposalCultivation Optimizationeng
dc.subject.proposalOptimización de cultivospa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike4.0 International License
Except where otherwise noted, this item's license is described as This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike4.0 International License