dc.contributor.author | Contreras Ropero, Jefferson Eduardo | |
dc.contributor.author | Barajas Solano, andres F | |
dc.contributor.author | García-Martinez, Janet | |
dc.contributor.author | Barajas Ferreira, Crisóstomo | |
dc.contributor.author | Machuca Martínez, Fiderman | |
dc.date.accessioned | 2025-02-27T15:31:58Z | |
dc.date.available | 2025-02-27T15:31:58Z | |
dc.date.issued | 2024-07-15 | |
dc.identifier.uri | https://repositorio.ufps.edu.co/handle/ufps/9148 | |
dc.description.abstract | The exploration of the biodiversity of cyanobacteria and microalgae holds great promise for obtaining
pigments of industrial interest. This study focused on the bioprospecting of these organisms to obtain
pigments of industrial interest together with enriched biomass. We investigated the impact of photoperiod and concentration of C/N/P nutrient sources in heterotrophic cultures, controlling specific variables such as light intensity, volume, pH, temperature, air flow and time to produce phycobiliproteins
in Arthrospira platensis UTEX1926 and total carotenoids in Scenedesmus sp. using a nonfactorial
Plackett‒Burman design in STATISTICA 7.0 software. The biomass concentration was determined by
dry weight, while the concentrations of phycocyanin and carotenoids were determined spectrophotometrically at specific wavelengths. Heterotrophic cultures demonstrated superior productivity, with
phycocyanin and carotenoids achieving percentages of 7% and 0.4% (w/w), respectively, and an R2 value of 0.99. Among the influential parameters, potassium diphosphate and sodium bicarbonate played
pivotal roles in the final deposition of carotenoids and phycocyanin, respectively, yielding concentrations of 96.5 mg/L phycocyanin and 6.5 mg/L carotenoids | eng |
dc.description.abstract | La exploración de la biodiversidad de cianobacterias y microalgas es muy prometedora para la obtención de pigmentos de interés industrial. Este estudio se centra en la bioprospección de estos organismos
para obtener pigmentos de interés industrial junto con biomasa enriquecida. Investigamos el impacto del
fotoperiodo y la concentración de fuentes de nutrientes C/N/P en cultivos heterótrofos, controlando variables específicas como la intensidad luminosa, volumen, pH, temperatura, flujo de aire y tiempo para la
producción de ficobiliproteínas en Arthrospira platensis UTEX1926 y carotenoides totales en Scenedesmus
sp. Empleando un diseño Plackett‒Burman no factorial en el software STATISTICA 7.0. La concentración
de biomasa fue determinada por peso seco, mientras que la concentración de ficocianinas y carotenoides
fueron determinadas espectrofotométricamente a longitudes de onda específicas. Los cultivos heterótrofos
demostraron una productividad superior, alcanzando las ficocianinas y los carotenoides porcentajes del
7% y el 0,4% (% p/p) respectivamente, y un notable valor R2 de 0,99. Entre los parámetros influyentes, el
difosfato potásico y el bicarbonato sódico desempeñaron papeles fundamentales en la deposición final de
carotenoides y ficocianinas, respectivamente, alcanzando concentraciones de 96,5 mg/L de ficocianinas y
6,5 mg/L de carotenoides | spa |
dc.format.extent | 16 Páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Ingeniería y Competitividad | spa |
dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike4.0 International License | eng |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.source | http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-30332024000200014 | spa |
dc.title | Production of industrial-interest colorants in microalgae and cyanobacteria: leveraging nutrient dynamics and photoperiod optimization | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Mesquita SDS, Teixeira CMLL, Servulo EFC. Carotenoids: Properties, applications and market. Rev Virtual Quim (Brazil). 2017;9(2):672–688. Disponible en: https://doi. org/10.21577/1984-6835.20170040 | spa |
dcterms.references | Carocho M, Barreiro MF, Morales P, Ferreira ICFR. Adding molecules to food, pros and cons: a review on synthetic and natural food additives. Compr rev food sci f (Estados Unidos). 2014;13(4):377-399. Disponible en: https://doi.org/10.1111/1541- 4337.12065 | spa |
dcterms.references | Doguc DK, Aylak F, Ilhan I, Kulac E, Gultekin F. Are there any marked effects of prenatal exposure to food colourings on neurobehaviour and learning process in rat offspring. Nutr Neurosci (Inglaterra). 2015;18(1):12–21. Disponible en: https://doi.org /10.1179/1476830513Y.0000000095. | spa |
dcterms.references | Khazi MI, Demirel Z, Dalay MC. Evaluation of growth and phycobiliprotein composition of cyanobacteria isolates cultivated in different nitrogen sources. J Appl Phycol (Países Bajos). 2018;30(3):1513–23. Disponible en: https://doi.org/10.1007/ s10811-018-1398-1 | spa |
dcterms.references | Mulders KJM, Lamers PP, Martens DE, Wijffels RH. Phototrophic pigment production with microalgae: Biological constraints and opportunities. J Phycol (Países Bajos). 2014;50(2):229–42. Disponible en: https://doi.org/10.1111/jpy.12173 | spa |
dcterms.references | Koller M, Muhr A, Braunegg G. Microalgae as versatile cellular factories for valued products. Algal Res (Países Bajos). 2014;6:52–63. Disponible en: https://doi. org/10.1016/j.algal.2014.09.002 | spa |
dcterms.references | Wijffels RH, Kruse O, Hellingwerf KJ. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr Opin Biotechnol (Inglaterra). 2013;24(3):405–13. Disponible en: https://doi.org/10.1016/j.copbio.2013.04.004. | spa |
dcterms.references | Hu, J., Nagarajan, D., Zhang, Q., Chang, J. S., & Lee, D. H. Heterotrophic cultivation of microalgae for pigment production: A review. Biotechnology Advances, 2018;36(1), 54–67. https://doi.org/10.1016/j.biotechadv.2017.09.009 | spa |
dcterms.references | Flórez-Miranda, L., Cañizares-Villanueva, R. O., Melchy-Antonio, O., Martínez‐ Jerónimo, F., & Flores-Ortíz, C. M. Two stage heterotrophy/photoinduction culture of Scenedesmus incrassatulus : potential for lutein production. Journal of Biotechnology. 2017;62, 67–74. https://doi.org/10.1016/j.jbiotec.2017.09.002 | spa |
dcterms.references | Pagels, F., Salvaterra, D., Amaro, H. M., & Guedes, A. C.. Pigments from microalgae. In Elsevier eBooks, 2020, 465–492. https://doi.org/10.1016/b978-0-12-818536- 0.00018-x | spa |
dcterms.references | Beltrán-Rocha JC, Guajardo-Barbosa C, Quintal IDB, López-Chuken UJ. Biotratamiento de efluentes secundarios municipales utilizando microalgas: Efecto del pH, nutrientes (C, N y P) y enriquecimiento con CO2. Revista de Biologia Marina y Oceanografia. 2017;52(3):417-427. doi:10.4067/s0718-19572017000300001 | spa |
dcterms.references | Guarin-Villegas E, Remolina-Páez LM, Bermúdez-Castro JP, Mogollón-Londoño SO, Contreras-Ropero JE, García Martínez JB, Barajas-Solano AF. Efecto de la relación carbono/Nitrógeno en la producción de carotenoids en microalgas. Ingeniería y Competitividad. 2020;22(1):1-13. doi:10.25100/iyc.v22i1.8686 | spa |
dcterms.references | Rosales-Loaiza N, Guevara M, Lodeiros C, Morales E. Crecimiento y producción de metabolitos de la cianobacteria marina Synechococcus sp. (Chroococcales) en función de la irradiancia. Revista de Biología Tropical. 2008;56(2):421-429. Disponible en: http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0034- 77442008000200001&lng=en&tlng=es. | spa |
dcterms.references | Contreras-Ropero JE, Lidueñez-Ballesteros VS, Rodríguez-Bohórquez AD, et al. The Effect of LEDs on Biomass and Phycobiliproteins Production in Thermotolerant Oscillatoria sp. Applied Sciences. 2022;12(22):11664. doi:10.3390/app122211664 | spa |
dcterms.references | Naranjo-briceño L, Rojas-tortolero D, González H, Torres R. Arthrospira platensis como biofactoría de metabolitos secundarios de interés farmacológico : el ácido pipecólico. Rev Latinoam Biotecnol Ambient y Algal (Mexico). 2010;1(1):64–90. Disponible en: http://www.solabiaa.org/ojs3/index.php/RELBAA/article/view/16. | spa |
dcterms.references | Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, et al. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant Journal (Inglaterra). 2008;54(4):621-639. Disponible en: https://doi. org/10.1111/j.1365-313X.2008.03492. | spa |
dcterms.references | Moheimani NR, Borowitzka MA, Isdepsky A, Fon Sing S. Standard methods for measuring growth of algae and their composition. En: Borowitzka MA, Moheimani NR, editores. Algae for Biofuels and Energy. Springer, Dordrecht. 2013; pp. 265-284. Disponible en: http://dx.doi.org/10.1007/978-94-007-5479-9_16. | spa |
dcterms.references | Přibyl P, Cepák V, Kaštánek P, Zachleder V. Elevated production of carotenoids by a new isolate of Scenedesmus sp. Algal Res (Países Bajos). 2015;11:22–27. Disponible en: https://doi.org/10.1016/j.algal.2015.05.020. | spa |
dcterms.references | Chen C, Kao P, Tan C, Show P, Cheah W, Lee W, et al. Using an innovative pH-stat CO2 feeding strategy to enhance cell growth and C-phycocyanin production from Arthrospira platensis. Biochem Eng J (Países Bajos). 2016;112:78-85. Disponible en: https://doi.org/10.1016/j.bej.2016.04.009. | spa |
dcterms.references | . Bennett A, Bogobad L. Complementary chromatic adaptation in a filamentous blue‒ green alga. J Cell Biol (Estados Unidos). 1973;58(2):419–35. Disponible en: https:// doi.org/10.1083/jcb.58.2.419. | spa |
dcterms.references | Zarrouk C. Contribution à l’étude d’une cyanophycée : influence de divers facteurs physiques et chimiques sur la croissance et la photosynthèse de Arthrospira maxima (Setch et Gardner) Geitler. ed S.L.N.D (francia). 1996;85p. | spa |
dcterms.references | Andersen RA, Berges JA, Harrison PJ, Watanabe MM. Recipes for Freshwater and Seawater Media. En: Andersen RA, editor. Algal Culturing Techniques. Springer, Dordrecht. 2005; pp. 429-538. | spa |
dcterms.references | StatSoft, INC. STATISTICA. Data analysis software system. 2004. Disponible en: www. statsoft.com | spa |
dcterms.references | Zhang, X., Yuan, H., Guan, L., Wang, X., Wang, Y., Jiang, Z., Cao, L., & Zhang, X. Influence of photoperiods on microalgae biofilm: photosynthetic performance, biomass yield, and cellular composition. Energies. 2019:12(19), 3724. https://doi. org/10.3390/en12193724 | spa |
dcterms.references | Niangoran, U., Buso, D., Zissis, G., & Prudhomme, T. Influence of light intensity and photoperiod on energy efficiency of biomass and pigment production of Spirulina (Arthrospira platensis). Oilseeds and Fats, Crops and Lipids/OCL. Oilseeds & Fats Crops and Lipids. 2021;28, 37. https://doi.org/10.1051/ocl/2021025 | spa |
dcterms.references | Vendruscolo, R. G., Fagundes, M. B., Maroneze, M. M., Nascimento, T. C. D., Menezes, C., Barin, J. S., Zepka, L. Q., Jacob‐Lopes, E., & Wagner, R. Scenedesmus obliquus metabolomics: effect of photoperiods and cell growth phases. Bioprocess and Biosystems Engineering. 2019; 42(5), 727–739. https://doi.org/10.1007/s00449-019- 02076-y | spa |
dcterms.references | Carvalho AP, Silva SO, Baptista JM, Malcata FX. Light requirements in microalgal photobioreactors: An overview of biophotonic aspects. Appl Microbiol Biotechnol (Alemania). 2011;89(5):1275–88. https://doi.org/10.1007/s00253-010-3047-8. | spa |
dcterms.references | Richmond A, Preiss K. The biotechnology of agriculture. Interdiscipl.Sci Rev (Inglaterra). 1980;5:60-69. https://doi.org/10.1179/030801880789767891. | spa |
dcterms.references | Pinchasov-Grinblat Y, Hoffman R, Dubinsky Z. El efecto de la fotoaclimatación sobre la eficiencia del almacenamiento de energía fotosintética, determinada por la fotoacústica. ICES | spa |
dcterms.references | Woodall AA, Lee SW-M, Weesie RJ, Jackson MJ, Britton G. Oxidación de carotenoides por radicales libres: relación entre estructura y reactividad. Biochim Biophys Acta Gen Subj (Países Bajos). 1997;1336(1):33–42. https://doi.org/10.1016/ S0304-4165(97)00006-8. | spa |
dcterms.references | . Hemlata, Fatma, T. Screening of Cyanobacteria for Phycobiliproteins and Effect of Different Environmental Stress on Its Yield. Bull Environ Contam Toxicol. 2009;83:509–515. https://doi.org/10.1007/s00128-009-9837-y | spa |
dcterms.references | Figueroa-Torres, G. M., Pittman, J. K., & Theodoropoulos, C. Optimisation of microalgal cultivation via nutrient-enhanced strategies: the biorefinery paradigm. Biotechnology for Biofuels. 2021;14(1). https://doi.org/10.1186/s13068-021-01912-2 | spa |
dcterms.references | P, Soundarapandian & Vasanthi, B. Effects of Chemical Parameters on Arthrospira platensis Biomass Production: Optimized Method for Phycocyanin Extraction. Int J Zool Res (India). 2008;4:1-11. https://doi.org/10.3923 / ijzr.2008.1.11. | spa |
dcterms.references | Del Pilar Sánchez‐Saavedra M, Voltolina D. The growth rate, biomass production and composition of Chaetoceros sp. grown with different light sources. Aquacultural Engineering. 2006;35(2):161-165. doi:10.1016/j.aquaeng.2005.12.001 | spa |
dcterms.references | Fan, X., Cao, X., Chu, Y., Wu, P., & Xue, S. The Light Regime Effect on Triacylglycerol Accumulation of Isochrysis zhangjiangensis. Journal of Ocean University of China. 2019; 18(2), 474–480. https://doi.org/10.1007/s11802-019-3691-2 | spa |
dcterms.references | . Chen, F., Zhang, Y. & Guo, S. Crecimiento y formación de ficocianina de Arthrospira platensis en cultivo fotoheterotrófico. Biotechnol Lett (Países Bajos). 1996;18:603-608. https://doi. org/10.1007/BF00140211 | spa |
dcterms.references | Lohr M, Schwender J, Polle JEW. Isoprenoid biosynthesis in eukaryotic phototrophs: A spotlight on algae. Plant Sci (Irlanda). 2012;185–186:9–22. https://doi. org/10.1016/j.plantsci.2011.07.018 | spa |
dcterms.references | Kumari A, Pathak AK, Guria C. Cost-Effective Cultivation of Arthrospira platensis Using NPK Fertilizer. Agricultural Research. 2015;4(3):261-271. doi:10.1007/s40003- 015-0168-4 | spa |
dcterms.references | Zhang P, Sun Q, Ye D, Lian S. Effects of different bicarbonate on Arthrospira in CO2 absorption and microalgae conversion hybrid system. Frontiers In Bioengineering And Biotechnology. 2023;10. doi:10.3389/fbioe.2022.1119111 | spa |
dcterms.references | . Manirafasha E, Murwanashyaka T, Ndikubwimana T, et al. Enhancement of cell growth and phycocyanin production in Arthrospira (Arthrospira) platensis by metabolic stress and nitrate fed-batch. Bioresource Technology. 2018;255:293-301. doi:10.1016/j.biortech.2017.12.068 | spa |
dcterms.references | Akgül, F., & Akgül, R. Combined effect of nitrogen and phosphorus on growth and biochemical composition of Tetradesmus obliquus (Turpin) M.J. Wynne. International Journal of Secondary Metabolite. 2022;9(4),525–537. https://doi. org/10.21448/ijsm.1102592 42. Coulombier, N., Nicolau, É., Dé | spa |
dcterms.references | Coulombier, N., Nicolau, É., Déan, L. L., Barthelemy, V., Schreiber, N., Brun, P., Lebouvier, N., & Jauffrais, T. Effects of Nitrogen Availability on the Antioxidant Activity and Carotenoid Content of the Microalgae Nephroselmis sp. Marine Drugs. 2020;18(9), 453. https://doi.org/10.3390/md18090453 | spa |
dcterms.references | Yaakob, M. A., Mohamed, R. M. S. R., Gokare, R. A., & Rao, A. R. (2021). Influence of nitrogen and phosphorus on microalgal growth, biomass, lipid, and fatty acid production: an overview. Cells. 2021;10(2), 393. https://doi.org/10.3390/ cells10020393 | spa |
dcterms.references | Chia MA, Lombardi AT, Da Graça Gama Melão M. Growth and biochemical composition of Chlorella vulgaris in different growth media. Anais Da Academia Brasileira de Ciencias. 2013;85(4):1427-1438. doi:10.1590/0001-3765201393312 | spa |
dc.identifier.doi | 10.25100/iyc. v26i2.13679 | |
dc.publisher.place | Cali- Colombia | spa |
dc.relation.citationedition | Vol.26 No.2 (2024) | spa |
dc.relation.citationendpage | 16 | spa |
dc.relation.citationissue | 2 (2024) | spa |
dc.relation.citationstartpage | 1 | spa |
dc.relation.citationvolume | 26 | spa |
dc.relation.cites | Contreras-Ropero, J.E., Barajas-Solano, A.F., García-Martínez, J.B., Barajas-Ferreira, C., Machuca-Martínez, F. Production of industrial-interest colorants in microalgae and cyanobacteria: leveraging nutrient dynamics and photoperiod optimization. Ingeniería y Competitividad, 2024, 26(2) e-21413679 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) | spa |
dc.subject.proposal | phycobiliproteins | eng |
dc.subject.proposal | Carotenoids | eng |
dc.subject.proposal | Arthrospira platensis UTEX1926 | eng |
dc.subject.proposal | Scenedesmus sp | eng |
dc.subject.proposal | Cultivation Optimization | eng |
dc.subject.proposal | Optimización de cultivo | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |