Mostrar el registro sencillo del ítem
GPU acceleration and game engines for wireless channel estimation in millimeter waves
dc.contributor.author | Gomez Rojas, Jorge | |
dc.contributor.author | Navarro, Andres | |
dc.contributor.author | Guevara_Ibarra, Dinael | |
dc.contributor.author | Pascual-Garcia, Juan | |
dc.date.accessioned | 2021-11-10T15:57:00Z | |
dc.date.available | 2021-11-10T15:57:00Z | |
dc.date.issued | 2019-10-05 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/842 | |
dc.description.abstract | In this article, the intended purpose is to show an innovative technique for estimating the MIMO channel at millimeter wave bands, candidates for mobile 5G technology, by using hardware acceleration, game engines and heuristic algorithms applied to optical ray launching techniques. To verify the performance of the ray launching tool, the normalized Power Delay Profile (PDP) was simulated. The channel was analyzed using the mean square delay error (RMS), the average value of the delay (MD) and the basic propagation loss (PL). The results obtained in computational precision and time were compared with those of a traditional ray tracing tool simulation programmed in MATLAB and with the measurements made in the 57 to 66 GHz range in a specialized laboratory. The results show that the presented technique becomes efficiently profitable from a small number of simulated events (reflections, diffractions). | eng |
dc.format.extent | 12 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Electronics | spa |
dc.relation.ispartof | Electronics | |
dc.rights | © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). | eng |
dc.source | https://www.mdpi.com/2079-9292/8/10/1121/htm | spa |
dc.title | GPU acceleration and game engines for wireless channel estimation in millimeter waves | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Calabuig, J.; Monserrat, J.F.; Gomez-Barquero, D. 5th Generation Mobile Networks: A New Opportunity for the Convergence of Mobile Broadband and Broadcast Services. IEEE Commun. Mag. 2015, 53, 198–205. | spa |
dcterms.references | Fettweis, G.; Alamouti, S. 5G: Personal mobile internet beyond what cellular did to telephony. IEEE Commun. Mag. 2014, 52, 140–145. | spa |
dcterms.references | International Wireless Industry Consortium (IWPC), Evolutionary & Disruptive Visions Towards Ultra High Capacity Networks. Available online:https://www.iwpc.org | spa |
dcterms.references | Gupta, A.; Jha, R.K. A Survey of 5G Network: Architecture and Emerging Technologies. IEEE Access 2015, 3, 1206–1232. | spa |
dcterms.references | Chandrasekhar, V.; Andrews, J.G.; Gatherer, A. Femtocell Networks: A Survey. IEEE Commun. Mag. 2008, 46, 59–67. | spa |
dcterms.references | Thompson, J.; Ge, X.; Wu, H.-C.; Irmer, R.; Jiang, H.; Fettweis, G.; Alamouti, S. 5G Wireless Communication Systems: Prospects and Challenges. IEEE Commun. Mag. 2014, 52, 62–64. | spa |
dcterms.references | Busari, S.A.; Mumtaz, S.; Al-Rubaye, S.; Rodríguez, J. 5G Millimeter-Wave Mobile Broadband: Performance and Challenges. IEEE Commun. Mag. 2018, 56, 137–143. | spa |
dcterms.references | Ni, Y.; Liang, J.; Shi, X.; Ban, D. Research on key technology in 5G mobile communication network. In Proceedings of the 2019 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS), Changsha, China, 12–13 January 2019. | spa |
dcterms.references | Degli-Esposti, V. Ray Tracing propagation modelling: Future prospects. In Proceedings of the 8th European Conference on Antennas and Propagation (EuCAP 2014), The Hague, The Netherlands, 6–11 April 2014. | spa |
dcterms.references | Rao, C.V.K.P. Signal modeling with stochastic and deterministic data: A lossless inverse scattering approach. In Proceedings of the ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing, New York, NY, USA, 11–14 April 1988. | spa |
dcterms.references | Key, C.; Troksa, B.; Kunkel, F.; Savic, S.V.; Ilic, M.M.; Notaros, B.M. Comparison of three sampling methods for shooting-bouncing ray tracing ssing a simple waveguide model. In Proceedings of the 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, USA, 8–13 July 2018. | spa |
dcterms.references | Martinez-Ingle, M.-T.; Pascual-García, J.; Rodríguez, J.-V.; Molina-Garcia-Pardo, J.-M.; Juan-Llácer, L.; Gaillot, D.P.; Liénard, M.; Degauque, P. Indoor radio channel characterization at 60 GHz. In Proceedings of the 2013 7th European Conference on Antennas and Propagation (EuCAP), Gothenburg, Sweden, 8–12 April 2013. | spa |
dcterms.references | Martinez-Ingles, M.-T.; Gaillot, D.P.; Pascual-Garcia, J.; Molina-Garcia-Pardo, J.-M.; Lienard, M.; Rodriguez, J.-V. Deterministic and Experimental Indoor mmW Channel Modeling. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 1047–1050. | spa |
dcterms.references | Zhu, M.; Singh, A.; Tufvesson, F. Measurement based ray launching for analysis of outdoor propagation. In Proceedings of the 2012 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, 26–30 March 2012. | spa |
dcterms.references | Lai, Z.; Bessis, N.; de LaRoche, G.; Song, H.; Zhang, J.; Clapworthy, G. An intelligent ray launching for urban prediction. In Proceedings of the 2009 3rd European Conference on Antennas and Propagation, Berlin, Germany, 23–27 March 2009. | spa |
dcterms.references | Weng, J.; Tu, X.; Lai, Z.; Salous, S.; Zhang, J. Modelling the mmWave channel based on intelligent ray launching model. In Proceedings of the 2015 9th European Conference on Antennas and Propagation (EuCAP), Lisbon, Portugal, 13–17 April 2015. | spa |
dcterms.references | Durgin, G.; Patwari, N.; Rappaport, T.S. An advanced 3D ray launching method for wireless propagation prediction. In Proceedings of the 1997 IEEE 47th Vehicular Technology Conference, Phoenix, AZ, USA, 4–7 May 1997. | spa |
dcterms.references | Lu, W.; Chan, K. Advanced 3D Ray Tracing Method for Indoor Propagation Prediction. Electron. Lett. 1998, 34, 1259–1260. | spa |
dcterms.references | Navarro, A.; Guevara, D.; Gomez, J. A Proposal to Improve Ray Launching Techniques. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 143–146. | spa |
dcterms.references | Liang, G.; Bertoni, H. A New Approach to 3-D Ray Tracing for Propagation Prediction in Cities. IEEE Trans. Antennas Propag. 1998, 46, 853–863. | spa |
dcterms.references | Navarro, A.; Guevara, D.; Cardona, N.; Gomez, J. Heuristic UTD Coefficients for Delay Spread Prediction in an Indoor Scenario. In Proceedings of the 11th European Conference on Antennas and Propagation (EUCAP), Paris, France, 19–24 March 2017. | spa |
dcterms.references | Chen, S.-H.; Jeng, S.-K. An SBR/Image Approach for Radio Wave Propagation in Indoor Environments with Metallic Furniture. IEEE Trans. Antennas Propag. 1997, 45, 98–106. | spa |
dcterms.references | Yun, Z.; Iskander, M.F. Ray Tracing for Radio Propagation Modeling: Principles and Applications. IEEE Access 2015, 3, 1089–1100. | spa |
dcterms.references | Schneider, C.; Sommerkorn, G.; Narandzic, M.; Kaske, M.; Hong, A.; Algeier, V.; Kotterman, W.A.T.; Thoma, R.S.; Jandura, C. Multi-user MIMO channel reference data for channel modelling and system evaluation from measurements. In Proceedings of the 2009 International ITG Workshop on Smart Antennas, Berlin, Germany, 16–18 February 2009. | spa |
dcterms.references | Rautiainen, T.; Wolfle, G.; Hoppe, R. Verifying path loss and delay spread predictions of a 3D ray tracing propagation model in urban environment. In Proceedings of the IEEE 56th Vehicular Technology Conference, Vancouver, BC, Canada, 24–28 September 2002. | spa |
dcterms.references | Navarro, A.; Guevara, D.; Gomez, J. Prediction of delay spread using ray tracing and game engine based on measurement. In Proceedings of the 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), Glasgow, UK, 11–14 May 2015. | spa |
dc.identifier.doi | https://doi.org/10.3390/electronics8101121 | |
dc.publisher.place | Suiza | spa |
dc.relation.citationedition | Vol.8 No.10.(2019) | spa |
dc.relation.citationendpage | 12 | spa |
dc.relation.citationissue | 10(2019) | spa |
dc.relation.citationstartpage | 1 | spa |
dc.relation.citationvolume | 8 | spa |
dc.relation.cites | Gomez-Rojas, J., Guevara, D., Navarro, A., & Pascual-Garcia, J. (2019). GPU Acceleration and Game Engines for Wireless Channel Estimation in Millimeter Waves. Electronics, 8(10), 1121. | |
dc.relation.ispartofjournal | Electronics | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.subject.proposal | ray launching | eng |
dc.subject.proposal | game engines | eng |
dc.subject.proposal | hardware acceleration | eng |
dc.subject.proposal | wireless channel estimation | eng |
dc.subject.proposal | MIMO channel estimation | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |