Show simple item record

dc.contributor.authorGALLARDO PÉREZ, HENRY DE JESÚS
dc.contributor.authorVergel Ortega, Mawency
dc.contributor.authorRojas Suárez, Jhan Piero
dc.date.accessioned2021-11-09T20:34:56Z
dc.date.available2021-11-09T20:34:56Z
dc.date.issued2020-08-05
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/810
dc.description.abstractTwo different sciences, physics and statistics, have worked, from the foundations of each, on the explanation and modelling of stochastic processes characterized by the succession of random variables whose realizations at each instant of time give rise to time series. From Physics we have worked with the Fourier transform to explain the dynamics of time series, a similar case occurs from statistics where dynamic models of time series are worked to explain the variations of the series and, in both cases, to make reliable forecasts. The main objective of this research is to adjust a model, using the methodology framed in the sequential update procedure of the forecast, to a time series of coal production observed quarterly during the years 2007 to 2011, in order to disaggregate quarterly the annual production for the years 2012 to 2018. Once the process has been carried out and validated, a quarterly production model is estimated which allows valid and reliable forecasts to be made for each quarter in subsequent years.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherJournal of Physics: Conference Seriesspa
dc.relation.ispartofJournal of Physics: Conference Series
dc.rightsContent from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltdeng
dc.sourcehttps://iopscience.iop.org/article/10.1088/1742-6596/1587/1/012016/metaspa
dc.titleDynamic and sequential update for time series forecastingeng
dc.typeArtículo de revistaspa
dcterms.referencesUnidad de Planeación Minero-Energética 2019 Boletín Estadístico de Minas y Energía (Bogotá: Ministerio de Minas y Energía)spa
dcterms.referencesUnidad de Planeación Minero-Energética 2019 Sistema de Información Minero Energético Colombiano (Bogotá: Ministerio de Minas y Energía)spa
dcterms.referencesPeña D 1990 Estadística Modelos y Métodos: 2. Modelos Lineales y Series Temporales (Madrid: Alianza Editorial)spa
dcterms.referencesBox G and Jenkins G 1969 Time Series Analysis, Forecasting and Control (San Francisco: Holden–Day)spa
dcterms.referencesGallardo H, Gallardo O and Rojas J 2019 Estimation of models and cycles in time series applying fractal geometry Journal of Physics: Conference Series 1329 012018 1spa
dcterms.referencesSaavedra V, Fernández T, Harmony T and Castro V 2006 Ondeletas en ingeniería, principios y aplicaciones Ingeniería, Investigación y Tecnología 7 185spa
dcterms.referencesGuerrero V 1991 Análisis Estadístico de Series de Tiempo Económicas (México: Universidad Autónoma Metropolitana)spa
dcterms.referencesPeña D 2010 Análisis de Series Temporales (Barcelona: Alianza Editorial)spa
dcterms.referencesGao J, Cao Y, Tung W and Hu J 2007 Multiscale Analysis of Complex Time Series: Integration of Chaos and Random Fractal Theory, and Beyond (New Jersey: John Wiley & Sons)spa
dcterms.referencesGallardo H, Rojas J and Gallardo O 2019 Modelación de Series Temporales en el Sector Productivo del Norte de Santander (Bogotá: ECOE)spa
dcterms.referencesMadrigal S 2014 Modelos de regresión para el pronóstico de series temporales con estacionalidad creciente Computación y Sistemas 18 821spa
dcterms.referencesRender B, Stair R and Hanna M 2006 Métodos Cuantitativos para los Negocios (México: Pearson)spa
dcterms.referencesBrockwell P and Davis R 2002 Introduction to Time Series and Forecasting (New York: Springer)spa
dcterms.referencesFrances P 1998 Time Series Models for Business and Economic Forecasting (Cambridge: University Press)spa
dcterms.referencesShumway R and Stoffer D 2017 Time Series Analysis and its Applications (Gewerbestrasse: Springer)spa
dcterms.referencesWhite G 2010 Introducción al Análisis de Vibraciones (New York: Azima DLI)spa
dcterms.referencesNores M and Díaz M 2005 Construcción de modelos gee para variables con distribución simétrica Revista de la Sociedad Argentina de Estadística 9 43spa
dcterms.referencesMedina R, Montoya E and Jaramillo A 2008 Estimación estadística de valores faltantes en series históricas de lluvia Cenicafé 59 260spa
dcterms.referencesMauricio J 2007 Introducción al Análisis de Series Multivariadas (Madrid: Universidad Complutense de Madrid)spa
dc.identifier.doi10.1088/1742-6596/1587/1/012016
dc.relation.citationeditionVol.1587 No.1.(2020)spa
dc.relation.citationendpage12016-7spa
dc.relation.citationissue1 (2020)spa
dc.relation.citationstartpage12016-1spa
dc.relation.citationvolume1587spa
dc.relation.citesPérez, H. G., Ortega, M. V., & Rojas-Suárez, J. P. (2020, July). Dynamic and sequential update for time series forecasting. In Journal of Physics: Conference Series (Vol. 1587, No. 1, p. 012016). IOP Publishing.
dc.relation.ispartofjournalJournal of Physics: Conference Seriesspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record