dc.contributor.author | Bautista-Ruiz, Jorge | |
dc.contributor.author | Rincón Joya, Miryam | |
dc.contributor.author | Raba Paez, Angela Mercedes | |
dc.date.accessioned | 2021-11-06T14:25:14Z | |
dc.date.available | 2021-11-06T14:25:14Z | |
dc.date.issued | 2016-10-10 | |
dc.identifier.uri | http://repositorio.ufps.edu.co/handle/ufps/697 | |
dc.description.abstract | Powders Nb2 O5 were prepared by two different synthesis method, Sol-Gel and polymeric precursors (Pechini). In the Pechini method before adding the citric acid in the process, four different solutions were used to get the samples. For Sol-gel method, two different processes were also used in obtaining powders. The precursor was completely solubilized in ethanol and then hydrolyzed with ammonia and water. The calcination of the samples was between 500 and 750°C. The resulting powders were characterized by Scanning Electron Microscopy (SEM), Brunauer, Emmett and Teller (BET) surface area measurements, UV-visible and Raman spectroscopy. The formation of T−Nb2 O5 orthorhombic took place upon calcination at 7500C. Crystallite sizes were determined using the Scherrer method which resulted in an uniformed size of about 25 − 65nm. Ultraviolet-Visible diffuse reflectance spectroscopy indicated a variation in the optical band gap values (3.32-3.40 eV) in crystal growth process. The Raman vibrational modes indicate the presence of the orthorhombic phase of the material. | eng |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Materials Research | spa |
dc.relation.ispartof | Materials Research | |
dc.rights | This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. | eng |
dc.source | https://www.scielo.br/j/mr/a/n4bgPM5KYHVtGrKp3CktDdF/?lang=en# | spa |
dc.title | Synthesis and Structural Properties of Niobium Pentoxide Powders: A Comparative Study of the Growth Process | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Wang YD, Yang LF, Zhou ZL, Li YF, Wu XH. Effects of calcining temperature on lattice constants and gas-sensing properties of Nb2O5. Materials Letters 2001;49(5):277-281. | spa |
dcterms.references | Mujawar SH, Inamdar AI, Patil SB, Patil PS. Electrochromic properties of spray-deposited niobium oxide thin films. Solid State Ionics 2006;177(37-38):3333-3338. | spa |
dcterms.references | Jose R, Thavasi V, Ramakhrisna S. Metal Oxides for Dye-Sensitized Solar Cells. Journal of the American Ceramic Society 2009;92(2):289-301. | spa |
dcterms.references | Lira-Cantu M, Krebs FC. Hybrid solar cells based on MEH-PPV and thin film semiconductor oxides (TiO2, Nb2O5, ZnO, CeO2 and CeO2-CTiO2): Performance improvement during long-time irradiation. Solar Energy Materials and Solar Cells 2006;90(14):2076-2086. | spa |
dcterms.references | Ahn KS, Kang MS, Lee JK, Shin BC, Lee JW. Enhanced electron diffusion length of mesoporous TiO2 film by using Nb2O5 energy barrier for dye-sensitized solar cells. Applied Physics Letters 2006;89:013103. | spa |
dcterms.references | Hashemzadeh F, Gaffarimejad A, Rahimi R. Porous p-NiO/n-Nb2O5 nanocomposites prepared by an EISA route with enhanced photocatalytic activity in simultaneous Cr(VI) reduction and methyl orange decoloration under visible light irradiation. Journal of Hazardous Materials 2015;286:64-74. | spa |
dcterms.references | Carniti P, Gervasini A, Marzo M. Dispersed NbOx Catalytic Phases in Silica Matrixes: Influence of Niobium Concentration and Preparative Route. The Journal of Physical Chemistry C 2008;112(36):14064-14074. | spa |
dcterms.references | Sreethawong T, Ngamsinlapasathian S, Lim SH, Yoshikawa S. Investigation of thermal treatment effect on physicochemical and photocatalytic H2 production properties of mesoporous-assembled Nb2O5 nanoparticles synthesized via a surfactant-modified sol-gel method. Chemical Engineering Journal 2013;215-216:322-330. | spa |
dcterms.references | Marin ML, Hallett-Tapley GL, Impellizzeri S, Fasciani C, Simoncelli S, Netto-Ferreira JC, et al. Synthesis, acid properties and catalysis by niobium oxide nanostructured materials. Catalysis Science & Technology 2014;4:3044-3052. | spa |
dcterms.references | Zhao Y, Zhou X, Ye L, Tsang SCE. Nanostructured Nb2O5 catalysts. Nano Reviews 2012;3:17631. | spa |
dcterms.references | Soares MRN, Leite S, Nico C, Peres M, Fernandes AJS, Graça MPF, et al. Effect of processing method on physical properties of Nb2O5. Journal of the European Ceramic Society 2011;31(4):501-506. | spa |
dcterms.references | Rani RA, Zoolfakar AS, O'Mullane AP, Austin MW, Kalantar-Zadeh K. Thin films and nanostructures of niobium pentoxide: fundamental properties, synthesis methods and applications. Journal of Materials Chemistry A 2014;2(38):15683-15703. | spa |
dcterms.references | Rosario AV, Pereira EC. Influence of the crystallinity on the Li+ intercalation process in Nb2O5 films. Journal of Solid State Electrochemistry 2005;9(10):665-673. | spa |
dcterms.references | Lopes OF, Paris EC, Ribeiro C. Synthesis of Nb2O5 nanoparticles through the oxidant peroxide method applied to organic pollutant photodegradation: A mechanistic study. Applied Catalysis B: Environmental 2014;144:800-808. | spa |
dcterms.references | Graça MPF, Meireles A, Nico C, Valente MA. Nb2O5 nanosize powders prepared by sol-gel Structure, morphology and dielectric properties. Journal of Alloys and Compounds 2013;553:177-182. | spa |
dcterms.references | Ristic M, Popovic S, Music S. Sol-gel synthesis and characterization of Nb2O5 powders. Materials Letters 2004;58(21):2658-2663. | spa |
dcterms.references | Uekawa N, Kudo T, Mori F, Wu YJ, Kakegawa K. Low-temperature synthesis of niobium oxide nanoparticles from peroxo niobic acid sol. Journal of Colloid and Interface Science 2003;264(2):378-384. | spa |
dcterms.references | Raba AM, Barba-Ortega J, Joya MR. The effect of the preparation method of Nb2O5 oxide influences the performance of the photocatalytic activity. Applied Physics A 2015;119(3):923-928. | spa |
dcterms.references | Bouquet V, Longo E, Leite ER, Varela JA. Influence of heat treatment on LiNbO3 thin films prepared on Si(111) by the polymeric precursor method. Journal of Materials Research 1999;14(7):3115-3121. | spa |
dcterms.references | Pechini MP, inventor; Sprague Electric Co, assignee. Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor. United States patent US 3330697 A. 1967 Jul 11. | spa |
dcterms.references | Galceran M, Pujol MC, Aguillo´ M, Díaz F. Sol- gel modified Pechini method for obtaining nanocrystalline KRE(WO4)2 (RE = Gd and Yb). Journal of Sol-Gel Science and Technology 2007;42(1):79-88. | spa |
dcterms.references | Kato K, Tamura S. Die Kristallstruktur von T-Nb2O5. Acta Crystallographica Section B 1975;B31:673-677. | spa |
dcterms.references | Ikeya T, Senna M. Change in the structure of niobium pentoxide due to mechanical and thermal treatments. Journal of Non-Crystalline Solids 1988;105(3):243-250. | spa |
dcterms.references | Liu J, Xue D, Li K. Single-crystalline nanoporous Nb2O5 nanotubes. Nanoscale Research Letters 2011;6:138. | spa |
dcterms.references | Cavalcante LS, Marques VS, Sczancoski JC, Escote MT, Joya MR, Varela JA, et al. Synthesis, structural refinement and optical behavior of CaTiO3 powders: A comparative study of processing in different furnaces. Chemical Engineering Journal 2008;143(1-3):299-307. | spa |
dcterms.references | Jehng JM, Wachs IE. Structural chemistry and Raman spectra of niobium oxides. Chemistry of Materials 1991;3(1):100-107. | spa |
dcterms.references | Bormanis K, Palatnikov M, Shcherbina O, Frolov A, Chufyrev P, Sidorov N. Physical Properties and Structure of Niobium Pentoxide Ceramics Treated by Concentrated Light Flow. Integrated Ferroelectrics 2011;123(1):137-143. | spa |
dcterms.references | Brayner R, Bozon-Verduraz F. Niobium pentoxide prepared by soft chemical routes: morphology, structure, defects and quantum size effect. Physical Chemistry Chemical Physics 2003;5:1457-1466. | spa |
dcterms.references | Mickova I. Photoelectrochemical Study of Anodically Formed Oxide Films on Niobium Surfaces. Croatica Chemica Acta 2010;83(2):113-120. | spa |
dc.identifier.doi | https://doi.org/10.1590/1980-5373-MR-2015-0733 | |
dc.publisher.place | Brasil | spa |
dc.relation.citationedition | Vol.19 No.6.(2016) | spa |
dc.relation.citationendpage | 1387 | spa |
dc.relation.citationissue | 6 (2016) | spa |
dc.relation.citationstartpage | 1381 | spa |
dc.relation.citationvolume | 19 | spa |
dc.relation.cites | Raba, A. M., Bautista-Ruíz, J., & Joya, M. R. (2016). Synthesis and structural properties of niobium pentoxide powders: a comparative study of the growth process. Materials Research, 19, 1381-1387. | |
dc.relation.ispartofjournal | Materials Research | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.subject.proposal | comparative study | eng |
dc.subject.proposal | sol-gel | eng |
dc.subject.proposal | Uv-Vis | eng |
dc.subject.proposal | Inelastic light scattering | eng |
dc.subject.proposal | Nb2 O5 | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |