Mostrar el registro sencillo del ítem
Removal of Nutrients and Pesticides from Agricultural Runoff Using Microalgae and Cyanobacteria
dc.contributor.author | Castellanos Estupiñan, Miguel A. | |
dc.contributor.author | Carrillo Botello, Astrid M. | |
dc.contributor.author | Rozo Granados, Linell S. | |
dc.contributor.author | Becerra Moreno, Dorance | |
dc.contributor.author | García-Martinez, Janet | |
dc.contributor.author | Urbina-Suarez, Nestor Andres | |
dc.contributor.author | López Barrera, German Luciano | |
dc.contributor.author | Barajas Solano, andres F | |
dc.contributor.author | ZUORRO, Antonio | |
dc.contributor.author | Samantha J., Bryan | |
dc.date.accessioned | 2024-04-18T16:17:33Z | |
dc.date.available | 2024-04-18T16:17:33Z | |
dc.date.issued | 2022-02-12 | |
dc.identifier.uri | https://repositorio.ufps.edu.co/handle/ufps/6968 | |
dc.description.abstract | The use of pesticides in agriculture has ensured the production of different crops. However, pesticides have become an emerging public health problem for Latin American countries due to their excessive use, inadequate application, toxic characteristics, and minimal residue control. The current project evaluates the ability of two strains of algae (Chlorella and Scenedesmus sp.) and one cyanobacteria (Hapalosyphon sp.) to remove excess pesticides and other nutrients present in runoff water from rice production. Different concentrations of wastewater and carbon sources (Na2CO3 and NaHCO3 ) were evaluated. According to the results, all three strains can be grown in wastewater without dilution (100%), with a biomass concentration comparable to a synthetic medium. All three strains significantly reduced the concentration of NO3 and PO4 (95 and 85%, respectively), with no difference between Na2CO3 or NaHCO3 . Finally, Chlorella sp. obtained the highest removal efficiency of the pesticide (Chlorpyrifos), followed by Scenedesmus and Hapalosyphon sp. (100, 75, and 50%, respectively). This work shows that it is possible to use this type of waste as an alternative source of nutrients to obtain biomass and metabolites of interest, such as lipids and carbohydrates, to produce biofuels. | eng |
dc.format.extent | 11 Páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Water (Switzerland) | spa |
dc.relation.ispartof | Water 2022, 14, 558. https://doi.org/10.3390/w14040558 | |
dc.rights | under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). | eng |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | spa |
dc.source | https://www.mdpi.com/2073-4441/14/4/558#:~:text=The%20application%20of%20microalgae%20and,%2C%20biodiesel%2C%20etc.)%2C | spa |
dc.title | Removal of Nutrients and Pesticides from Agricultural Runoff Using Microalgae and Cyanobacteria | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Setty, K.; Jiménez, A.; Willetts, J.; Leifels, M.; Bartram, J. Global Water, Sanitation and Hygiene Research Priorities and Learning Challenges under Sustainable Development Goal 6. Dev. Policy Rev. 2020, 38, 64–84. [CrossRef] [PubMed] | spa |
dcterms.references | de Souza, R.M.; Seibert, D.; Quesada, H.B.; de Jesus Bassetti, F.; Fagundes-Klen, M.R.; Bergamasco, R. Occurrence, Impacts and General Aspects of Pesticides in Surface Water: A Review. Process Saf. Environ. Prot. 2020, 135, 22–37. [CrossRef] | spa |
dcterms.references | Peña, A.; Delgado-Moreno, L.; Rodríguez-Liébana, J.A. A Review of the Impact of Wastewater on the Fate of Pesticides in Soils: Effect of Some Soil and Solution Properties. Sci. Total Environ. 2020, 718, 134468. [CrossRef] [PubMed] | spa |
dcterms.references | Santos, F.M.; Pires, J.C.M. Microalgae Cultivation in Wastewater to Recycle Nutrients as Biofertilizer BT—Environmental Biotechnology; Gothandam, K.M., Ranjan, S., Dasgupta, N., Lichtfouse, E., Eds.; Springer International Publishing: Cham, Switzerland, 2020; Volume 1, pp. 71–86. [CrossRef] | spa |
dcterms.references | Mehariya, S.; Goswami, R.K.; Verma, P.; Lavecchia, R.; Zuorro, A. Integrated Approach for Wastewater Treatment and Biofuel Production in Microalgae Biorefineries. Energies 2021, 14, 2282. [CrossRef] | spa |
dcterms.references | Li, K.; Liu, Q.; Fang, F.; Luo, R.; Lu, Q.; Zhou, W.; Huo, S.; Cheng, P.; Liu, J.; Addy, M.; et al. Microalgae-Based Wastewater Treatment for Nutrients Recovery: A Review. Bioresour. Technol. 2019, 291, 121934. [CrossRef] | spa |
dcterms.references | Kotoula, D.; Iliopoulou, A.; Irakleous-Palaiologou, E.; Gatidou, G.; Aloupi, M.; Antonopoulou, P.; Fountoulakis, M.S.; Stasinakis, A.S. Municipal Wastewater Treatment by Combining in Series Microalgae Chlorella Sorokiniana and Macrophyte Lemna Minor: Preliminary Results. J. Clean. Prod. 2020, 271, 122704. [CrossRef] | spa |
dcterms.references | Hariz, H.B.; Takriff, M.S.; Ba-Abbad, M.M.; Mohd Yasin, N.H.; Mohd Hakim, N.I.N. CO2 Fixation Capability of Chlorella Sp. and Its Use in Treating Agricultural Wastewater. J. Appl. Phycol. 2018, 30, 3017–3027. [CrossRef] | spa |
dcterms.references | Shahid, A.; Malik, S.; Zhu, H.; Xu, J.; Nawaz, M.Z.; Nawaz, S.; Asraful Alam, M.; Mehmood, M.A. Cultivating Microalgae in Wastewater for Biomass Production, Pollutant Removal, and Atmospheric Carbon Mitigation; a Review. Sci. Total Environ. 2020, 704, 135303. [CrossRef] | spa |
dcterms.references | Mehariya, S.; Fratini, F.; Lavecchia, R.; Zuorro, A. Green Extraction of Value-Added Compounds Form Microalgae: A Short Review on Natural Deep Eutectic Solvents (NaDES) and Related Pre-Treatments. J. Environ. Chem. Eng. 2021, 9, 105989. [CrossRef] | spa |
dcterms.references | Rani, A.; Saini, K.C.; Bast, F.; Mehariya, S.; Bhatia, S.K.; Lavecchia, R.; Zuorro, A. Microorganisms: A Potential Source of Bioactive Molecules for Antioxidant Applications. Molecules 2021, 26, 1142. [CrossRef] | spa |
dcterms.references | Quintero-Dallos, V.; García-Martínez, J.B.; Contreras-Ropero, J.E.; Barajas-Solano, A.F.; Barajas-Ferrerira, C.; Lavecchia, R.; Zuorro, A. Vinasse as a Sustainable Medium for the Production of Chlorella vulgaris UTEX 1803. Water 2019, 11, 1526. [CrossRef] | spa |
dcterms.references | Zuorro, A.; Maffei, G.; Lavecchia, R. Kinetic Modeling of Azo Dye Adsorption on Non-Living Cells of Nannochloropsis Oceanica. J. Environ. Chem. Eng. 2017, 5, 4121–4127. [CrossRef] | spa |
dcterms.references | Mohsenpour, S.F.; Hennige, S.; Willoughby, N.; Adeloye, A.; Gutierrez, T. Integrating Micro-Algae into Wastewater Treatment: A Review. Sci. Total Environ. 2021, 752, 142168. [CrossRef] [PubMed] | spa |
dcterms.references | D ˛ebowski, M.; Zieli ´nski, M.; Kazimierowicz, J.; Kujawska, N.; Talbierz, S. Microalgae Cultivation Technologies as an Opportunity for Bioenergetic System Development—Advantages and Limitations. Sustainability 2020, 12, 9980. [CrossRef] | spa |
dcterms.references | Ammar, S.H.; Khadim, H.J.; Mohamed, A.I. Cultivation of Nannochloropsis Oculata and Isochrysis Galbana Microalgae in Produced Water for Bioremediation and Biomass Production. Environ. Technol. Innov. 2018, 10, 132–142. [CrossRef] | spa |
dcterms.references | Rueda, E.; García-Galán, M.J.; Ortiz, A.; Uggetti, E.; Carretero, J.; García, J.; Díez-Montero, R. Bioremediation of Agricultural Runoff and Biopolymers Production from Cyanobacteria Cultured in Demonstrative Full-Scale Photobioreactors. Process Saf. Environ. Prot. 2020, 139, 241–250. [CrossRef] | spa |
dcterms.references | García-Galán, M.J.; Monllor-Alcaraz, L.S.; Postigo, C.; Uggetti, E.; López de Alda, M.; Díez-Montero, R.; García, J. MicroalgaeBased Bioremediation of Water Contaminated by Pesticides in Peri-Urban Agricultural Areas. Environ. Pollut. 2020, 265, 114579. [CrossRef] | spa |
dcterms.references | Li, X.; Yang, C.; Zeng, G.; Wu, S.; Lin, Y.; Zhou, Q.; Lou, W.; Du, C.; Nie, L.; Zhong, Y. Nutrient Removal from Swine Wastewater with Growing Microalgae at Various Zinc Concentrations. Algal Res. 2020, 46, 101804. [CrossRef] | spa |
dcterms.references | Pacheco, D.; Rocha, A.C.; Pereira, L.; Verdelhos, T. Microalgae Water Bioremediation: Trends and Hot Topics. Appl. Sci. 2020, 10, 1886. [CrossRef] | spa |
dcterms.references | Baird, R.; Bridgewater, L. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017. | spa |
dcterms.references | Zalat, O.A.; Elsayed, M.A.; Fayed, M.S.; Abd El Megid, M.K. Validation of UV Spectrophotometric and HPLC Methods for Quantitative Determination of Chlorpyrifos. Int. Lett. Chem. Phys. Astron. 2013, 21, 58–63. [CrossRef] | spa |
dcterms.references | Andersen, R.A.; Berges, J.A.; Harrison, P.J.; Watanabe, M.M. Appendix A—Recipes for Freshwater and Seawater Media. In Algal Culturing Techniques; Andersen, R.A., Ed.; Elsevier Academic Press: Burlington, MA, USA, 2005; pp. 429–538. | spa |
dcterms.references | Garcia-Martinez, J.B.; Urbina-Suarez, N.A.; Zuorro, A.; Barajas-Solano, A.F.; Kafarov, V. Fisheries Wastewater as a Sustainable Media for the Production of Algae-Based Products. Chem. Eng. Trans. 2019, 76, 1339–1344. [CrossRef] | spa |
dcterms.references | Sanchez-Galvis, E.M.; Cardenas-Gutierrez, I.Y.; Contreras-Ropero, J.E.; García-Martínez, J.B.; Barajas-Solano, A.F.; Zuorro, A. An Innovative Low-Cost Equipment for Electro-Concentration of Microalgal Biomass. Appl. Sci. 2020, 10, 4841. [CrossRef] | spa |
dcterms.references | García-Martínez, J.B.; Ayala-Torres, E.; Reyes-Gómez, O.; Zuorro, A.; Andrés, F.; Barajas-Solano, B.; Crisóstomo, C.; BarajasFerreira, B. Evaluation of a Two-Phase Extraction System of Carbohydrates and Proteins from Chlorella Vulgaris Utex 1803. Chem. Eng. Trans. 2016, 49, 355–360. [CrossRef] | spa |
dcterms.references | Mishra, S.K.; Suh, W.I.; Farooq, W.; Moon, M.; Shrivastav, A.; Park, M.S.; Yang, J.W. Rapid Quantification of Microalgal Lipids in Aqueous Medium by a Simple Colorimetric Method. Bioresour. Technol. 2014, 155, 330–333. [CrossRef] [PubMed] | spa |
dcterms.references | Mota, M.F.S.; Souza, M.F.; Bon, E.P.S.; Rodrigues, M.A.; Freitas, S.P. Colorimetric Protein Determination in Microalgae (Chlorophyta): Association of Milling and SDS Treatment for Total Protein Extraction. J. Phycol. 2018, 54, 577–580. [CrossRef] | spa |
dcterms.references | Hynstova, V.; Sterbova, D.; Klejdus, B.; Hedbavny, J.; Huska, D.; Adam, V. Separation, Identification and Quantification of Carotenoids and Chlorophylls in Dietary Supplements Containing Chlorella Vulgaris and Spirulina Platensis Using High Performance Thin Layer Chromatography. J. Pharm. Biomed. Anal. 2018, 148, 108–118. [CrossRef] | spa |
dcterms.references | Zuorro, A.; Leal-Jerez, A.G.; Morales-Rivas, L.K.; Mogollón-Londoño, S.O.; Sanchez-Galvis, E.M.; García-Martínez, J.B.; BarajasSolano, A.F. Enhancement of Phycobiliprotein Accumulation in Thermotolerant Oscillatoria Sp. through Media Optimization. ACS Omega 2021, 6, 10527–10536. [CrossRef] | spa |
dcterms.references | Rasoul-Amini, S.; Montazeri-Najafabady, N.; Shaker, S.; Safari, A.; Kazemi, A.; Mousavi, P.; Mobasher, M.A.; Ghasemi, Y. Removal of Nitrogen and Phosphorus from Wastewater Using Microalgae Free Cells in Bath Culture System. Biocatal. Agric. Biotechnol. 2014, 3, 126–131. [CrossRef] | spa |
dcterms.references | Ahmad, A.; Banat, F.; Alsafar, H.; Hasan, S.W. Algae Biotechnology for Industrial Wastewater Treatment, Bioenergy Production, and High-Value Bioproducts. Sci. Total Environ. 2022, 806, 150585. [CrossRef] | spa |
dcterms.references | Zuorro, A.; García-Martínez, J.B.; Barajas-Solano, A.F. The Application of Catalytic Processes on the Production of Algae-Based Biofuels: A Review. Catalysts 2021, 11, 22. [CrossRef | spa |
dcterms.references | Guiza-Franco, L.; Orozco-Rojas, L.G.; Sanchez-Galvis, M.; Garcia-Martinez, J.B.; Barajas-Ferreira, C.; Zuorro, A.; Barajas-Solano, A.F. Production of Chlorella Vulgaris Biomass on UV-Treated Wastewater as an Alternative for Environmental Sustainability on High-Mountain Fisheries. Chem. Eng. Trans. 2018, 64, 517–522. [CrossRef] | spa |
dcterms.references | Sivaramakrishnan, R.; Incharoensakdi, A. Enhancement of Total Lipid Yield by Nitrogen, Carbon, and Iron Supplementation in Isolated Microalgae. J. Phycol. 2017, 53, 855–868. [CrossRef] [PubMed] | spa |
dcterms.references | Shuyu, L.; Jingling, X.; Hongyan, Y.; Cen, Z.; Wenli, C.; Fang, M. Comparing the Effect of C, N, and P Factors on Photosynthesis, Biomass, and Lipid Production in Chlorella Sp. J. Environ. Eng. 2018, 144, 4018116. [CrossRef] | spa |
dcterms.references | El Shenawy, E.A.; Elkelawy, M.; Bastawissi, H.A.-E.; Taha, M.; Panchal, H.; Sadasivuni, K.K.; Thakar, N. Effect of Cultivation Parameters and Heat Management on the Algae Species Growth Conditions and Biomass Production in a Continuous Feedstock Photobioreactor. Renew. Energy 2020, 148, 807–815. [CrossRef] | spa |
dcterms.references | Tu, Z.; Liu, L.; Lin, W.; Xie, Z.; Luo, J. Potential of Using Sodium Bicarbonate as External Carbon Source to Cultivate Microalga in Non-Sterile Condition. Bioresour. Technol. 2018, 266, 109–115. [CrossRef] [PubMed] | spa |
dcterms.references | Lohman, E.J.; Gardner, R.D.; Pedersen, T.; Peyton, B.M.; Cooksey, K.E.; Gerlach, R. Optimized Inorganic Carbon Regime for Enhanced Growth and Lipid Accumulation in Chlorella Vulgaris. Biotechnol. Biofuels 2015, 8, 82. [CrossRef] [PubMed] | spa |
dcterms.references | Kim, G.-Y.; Heo, J.; Kim, H.-S.; Han, J.-I. Bicarbonate-Based Cultivation of Dunaliella Salina for Enhancing Carbon Utilization Efficiency. Bioresour. Technol. 2017, 237, 72–77. [CrossRef] [PubMed] | spa |
dcterms.references | Pancha, I.; Chokshi, K.; Ghosh, T.; Paliwal, C.; Maurya, R.; Mishra, S. Bicarbonate Supplementation Enhanced Biofuel Production Potential as Well as Nutritional Stress Mitigation in the Microalgae Scenedesmus Sp. CCNM 1077. Bioresour. Technol. 2015, 193, 315–323. [CrossRef] [PubMed] | spa |
dcterms.references | Umetani, I.; Janka, E.; Sposób, M.; Hulatt, C.J.; Kleiven, S.; Bakke, R. Bicarbonate for Microalgae Cultivation: A Case Study in a Chlorophyte, Tetradesmus Wisconsinensis Isolated from a Norwegian Lake. J. Appl. Phycol. 2021, 33, 1341–1352. [CrossRef] | spa |
dcterms.references | Khalid, A.A.H.; Yaakob, Z.; Abdullah, S.R.S.; Takriff, M.S. Analysis of the Elemental Composition and Uptake Mechanism of Chlorella Sorokiniana for Nutrient Removal in Agricultural Wastewater under Optimized Response Surface Methodology (RSM) Conditions. J. Clean. Prod. 2019, 210, 673–686. [CrossRef] | spa |
dcterms.references | Matamoros, V.; Rodríguez, Y. Batch vs Continuous-Feeding Operational Mode for the Removal of Pesticides from Agricultural Run-off by Microalgae Systems: A Laboratory Scale Study. J. Hazard. Mater. 2016, 309, 126–132. [CrossRef] | spa |
dcterms.references | Vazirzadeh, A.; Jafarifard, K.; Ajdari, A.; Chisti, Y. Removal of Nitrate and Phosphate from Simulated Agricultural Runoff Water by Chlorella Vulgaris. Sci. Total Environ. 2022, 802, 149988. [CrossRef] [PubMed] | spa |
dcterms.references | Cai, T.; Park, S.Y.; Li, Y. Nutrient Recovery from Wastewater Streams by Microalgae: Status and Prospects. Renew. Sustain. Energy Rev. 2013, 19, 360–369. [CrossRef] | spa |
dcterms.references | Kumar, P.K.; Vijaya Krishna, S.; Verma, K.; Pooja, K.; Bhagawan, D.; Himabindu, V. Phycoremediation of Sewage Wastewater and Industrial Flue Gases for Biomass Generation from Microalgae. South African J. Chem. Eng. 2018, 25, 133–146. [CrossRef] | spa |
dcterms.references | Liu, J.; Danneels, B.; Vanormelingen, P.; Vyverman, W. Nutrient Removal from Horticultural Wastewater by Benthic Filamentous Algae Klebsormidium Sp., Stigeoclonium Spp. and Their Communities: From Laboratory Flask to Outdoor Algal Turf Scrubber (ATS). Water Res. 2016, 92, 61–68. [CrossRef] [PubMed] | spa |
dcterms.references | García-Galán, M.J.; Gutiérrez, R.; Uggetti, E.; Matamoros, V.; García, J.; Ferrer, I. Use of Full-Scale Hybrid Horizontal Tubular Photobioreactors to Process Agricultural Runoff. Biosyst. Eng. 2018, 166, 138–149. [CrossRef] | spa |
dcterms.references | Díez-Montero, R.; Belohlav, V.; Ortiz, A.; Uggetti, E.; García-Galán, M.J.; García, J. Evaluation of Daily and Seasonal Variations in a Semi-Closed Photobioreactor for Microalgae-Based Bioremediation of Agricultural Runoff at Full-Scale. Algal Res. 2020, 47, 101859. [CrossRef] | spa |
dcterms.references | Marella, T.K.; Saxena, A.; Tiwari, A.; Datta, A.; Dixit, S. Treating Agricultural Non-Point Source Pollutants Using Periphyton Biofilms and Biomass Volarization. J. Environ. Manage. 2022, 301, 113869. [CrossRef] | spa |
dcterms.references | Bohutskyi, P.; Chow, S.; Ketter, B.; Fung Shek, C.; Yacar, D.; Tang, Y.; Zivojnovich, M.; Betenbaugh, M.J.; Bouwer, E.J. Phytoremediation of Agriculture Runoff by Filamentous Algae Poly-Culture for Biomethane Production, and Nutrient Recovery for Secondary Cultivation of Lipid Generating Microalgae. Bioresour. Technol. 2016, 222, 294–308. [CrossRef] [PubMed] | spa |
dcterms.references | de-Bashan, L.E.; Bashan, Y. Recent Advances in Removing Phosphorus from Wastewater and Its Future Use as Fertilizer (1997–2003). Water Res. 2004, 38, 4222–4246. [CrossRef] | spa |
dcterms.references | Larsdotter, K.; la Cour Jansen, J.; Dalhammar, G. Phosphorus Removal from Wastewater by Microalgae in Sweden—A Year-round Perspective. Environ. Technol. 2010, 31, 117–123. [CrossRef] [PubMed] | spa |
dc.identifier.doi | 10.3390/w14040558 | |
dc.publisher.place | Suiza | spa |
dc.relation.citationedition | Vol.14 No.558 (2022) | spa |
dc.relation.citationendpage | 11 | spa |
dc.relation.citationissue | 558 (2022) | spa |
dc.relation.citationstartpage | 1 | spa |
dc.relation.citationvolume | 14 | spa |
dc.relation.cites | : Castellanos-Estupiñan, M.A.; Carrillo-Botello, A.M.; Rozo-Granados, L.S.; Becerra-Moreno, D.; García-Martínez, J.B.; Urbina-Suarez, N.A.; LópezBarrera, G.L.; Barajas-Solano, A.F.; Bryan, S.J.; Zuorro, A. Removal of Nutrients and Pesticides from Agricultural Runoff Using Microalgae and Cyanobacteria. Water 2022, 14, 558. https://doi.org/ 10.3390/w14040558 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.subject.proposal | pesticides | eng |
dc.subject.proposal | nitrate removal | eng |
dc.subject.proposal | phosphate removal | eng |
dc.subject.proposal | biomass production | eng |
dc.subject.proposal | metabolites | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |