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Abstract: The use of pesticides in agriculture has ensured the production of different crops. However,
pesticides have become an emerging public health problem for Latin American countries due to
their excessive use, inadequate application, toxic characteristics, and minimal residue control. The
current project evaluates the ability of two strains of algae (Chlorella and Scenedesmus sp.) and one
cyanobacteria (Hapalosyphon sp.) to remove excess pesticides and other nutrients present in runoff
water from rice production. Different concentrations of wastewater and carbon sources (Na2CO3 and
NaHCO3) were evaluated. According to the results, all three strains can be grown in wastewater
without dilution (100%), with a biomass concentration comparable to a synthetic medium. All three
strains significantly reduced the concentration of NO3 and PO4 (95 and 85%, respectively), with
no difference between Na2CO3 or NaHCO3. Finally, Chlorella sp. obtained the highest removal
efficiency of the pesticide (Chlorpyrifos), followed by Scenedesmus and Hapalosyphon sp. (100, 75, and
50%, respectively). This work shows that it is possible to use this type of waste as an alternative
source of nutrients to obtain biomass and metabolites of interest, such as lipids and carbohydrates, to
produce biofuels.

Keywords: pesticides; nitrate removal; phosphate removal; biomass production; metabolites

1. Introduction

Ensuring water availability and quality, sustainable agriculture, and food security are
critical issues that require sustainable alternatives that positively impact the growth of
societies [1]. Pesticides are one of the most important agricultural inputs that guarantee
quality and efficiency in crop production. However, due to their excessive use, inadequate
application, toxic characteristics, and minimal residue control, pesticides have become an
emerging problem of public health, water pollution, and environmental contamination
in general [2]. Agricultural sectors such as the rice industry use large amounts of water
and agrochemicals for their crops that can be transported through surface runoff, leaching
into the soil and evaporating into the atmosphere, contaminating bodies of surface or
groundwater, food, and the air we breathe [3]. In Norte de Santander (Colombia), one of
the most used pesticides is Chlorpyrifos, which has no reported restrictions according to
the National Ministry of Agriculture. Nitrogen and phosphorus are two macronutrients
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present in these fertilizers that favor crop growth and productivity, but if applied in excess
or inadequately, they are not completely assimilated by plants and infiltrate through runoff,
contaminating ground and surface water, causing severe damage to the environment and
human health [4]. The techniques applied in the industrial production of fertilizers cause
environmental problems; generally, the production of nitrogen at the industrial level is
carried out through synthesis processes that convert atmospheric nitrogen into ammonia
using natural gas, generating large amounts of CO2 released into the atmosphere, contribut-
ing to global warming. On the other hand, phosphorus is obtained from minerals based
on non-renewable phosphates, using chemical processes with sulfuric acid to obtain them,
which produce by-products that are hazardous to both health and the environment [5].

Microalgae and cyanobacteria, as photosynthetic microorganisms, represent a viable
alternative in wastewater treatment given their diverse environmental and biotechnological
production benefits such as the assimilation of nutrients, use of light, consumption of CO2
from the atmosphere, generation of high-value products and biomolecules, production of
oxygen, generation of homogeneous biomass, and high photosynthetic efficiency, among
others [6]. During the last decade, these characteristics have been studied regarding the
treatment of different types of wastewaters: domestic [7], industrial, and agricultural,
among others, evidencing their growth in agricultural wastewater [8–13]. However, the
application of algae and cyanobacteria to remove contaminants possesses limitations, such
as their tolerance to the type of wastewater and their high-energy concentration demand,
especially in the mixing and harvesting the biomass produced [14,15].

Wastewater contains several compounds that can be used as raw material for various
industries, which is why in recent years, the reuse of these compounds as essential nutrients
for microalgae production has been proposed [9], reducing production costs for high value-
added products whose operation in terms of costs is unfeasible in the current market [16].
The cultivation of microalgae in the biotechnology industry demands a large amount of
water, which is a factor to consider bearing in mind the scarce availability of the resource
during intense periods in the summer; for this reason, the cultivation of microalgae in
wastewater offers an ideal scenario in three indispensable factors for the cultivation of
microalgae: water reuse, the availability [17] of nutrients, and the assimilation of pollutants.
Recent studies have demonstrated the efficiency of microalgae for the treatment of different
types of pesticides used in the agricultural industry; Garcia-Galán et al. [18] showed
that a microalgae culture system worked effectively to decontaminate agricultural runoff
contaminated with different types of pesticides commonly used in various crops. On
the other hand, Li et al. [19] demonstrated the elimination of pollutants and production
of by-products with the use of wastewater from the swine industry, which opens the
possibility of its application in different scenarios that lead to a decrease in the pressure
and contamination of water resources. Other benefits include the reduction in costs in algal
biorefining, the production of high-value by-products, and the care of the environment in
general [20].

The objective of this study was to evaluate the viability of the cultivation of microalgae
and cyanobacteria using two types of wastewater from rice cultivation. This was to
determine the assimilation capacity of contaminants present in this medium such as nitrates,
phosphates, and pesticides in the search for the production of metabolites of interest,
offering a viable alternative focused on the reuse of wastewater from rice cultivation,
as well as the treatment of wastewater to optimal conditions for its discharge, and the
bioconversion of these in the production of high value-added metabolites.

2. Materials and Methods
2.1. Agricultural Runoff

The agricultural wastewater was obtained from the discharge canals of the irrigation
area of rice production fields in the municipality of Zulia (Cúcuta, Norte de Santander)
during the month of March (2019). For cultivation, the effluents were filtered twice with a
cloth filter and sterilized by autoclave (120 ◦C, 20 min) to avoid interference of bacteria or
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fungi. The wastewater was chemically analyzed (NO3, PO4, pH, turbidity, conductivity,
temperature, salinity, total dissolved solids, COD, BOD5, total solids, total suspended
solids, volatile suspended solids, and sedimentable solids) according to standard methods
for the examination of water and wastewater [21]. The Chlorpyrifos concentration was
determined according to the method described by Zalat et al. [22].

2.2. Strains

Hapalosyphon sp. (HAPA_UFPS002), Chlorella sp. (CHLO_UFPS010), and Scenedesmus
sp. (SCEN_UFPS015) from the INNOValgae collection (Universidad Francisco de Paula
Santander, Colombia) were used in this study. These strains were previously isolated from
thermal springs near Cucuta (Norte de Santander, Colombia) and possess the capacity to
grow in contaminated waters (data not shown). The strains were pre-cultivated in a 2 L
glass flask with a working volume of 1.2 L containing Bold Basal media for the algae and
BG11 for the cyanobacteria [23]. The media was mixed through the injection of filtered air
(Acro® 37 TF Vent, PTFE membrane) with 0.5% (v/v) CO2 at a flow rate of 0.78 L min−1,
25 ◦C, and a light:dark cycle of 12:12 h at 100 µmol m−2 s−1 for 30 days.

2.3. Experimental Design

Initially, the capacity of the strains to grow in wastewater was determined. The
selected strains were inoculated with different concentrations of wastewater diluted with
distilled water (10, 50, 75, and 100 v/v). The concentration of wastewater that allowed
the growth of the three strains was supplemented with different concentrations (0.8, 1.2,
and 1.6 g/L) of either sodium carbonate (Na2CO3) or sodium bicarbonate (NaHCO3) [24]
before inoculation to enhance the biomass production and the removal of NO3 and PO4.
The results were analyzed using a two-way ANOVA GraphPad Prism version 9.

All the strains were cultured (in triplicate) in a 2 L glass flask with a working volume
of 1.2 L of sterile wastewater. Each flask was mixed by the injection of filtered air at a flow
rate of 0.78 L min−1 (Resun, LP-100) and a light:dark cycle of 12:12 h at 110 µmol m−2 s−1

for 20 days. The produced biomass was concentrated by electroflotation (10 aluminum
electrodes, 20 min, 150 rpm, and 50 W) [25], washed twice with distilled water, freeze-dried,
and stored (4 ◦C) until use. Finally, the different components of the strains, including
carbohydrates [26], lipids [27], proteins [28], carotenoids [29], phycocyanins [30], and
ash [31], were measured.

3. Results

The physicochemical analysis shows the initial characteristics present in the agricul-
tural wastewater (Table 1); considering the study, it can be observed that the wastewater
from the discharge of the irrigation canal presents a high concentration of pesticides
(15.3 mg/L), which, according to Colombian regulations (Resolution 631—2015), is outside
the maximum permissible limits for active ingredients of pesticides of toxicological cate-
gories 1A, 1B, and II. Additionally, there are concentrations of nitrates and phosphates that
may affect the ecological balance of the water sources.

The results show that all three strains can grow in different concentrations of agri-
cultural runoff. Under low levels (10% v/v) of wastewater, the biomass produced was
relatively low (<0.3 g/L) and increased with higher concentrations of the wastewater due
to higher levels of NO3 and PO4 (Figure 1). All strains reported their highest biomass con-
centrations at full strength of the agricultural runoff, which also indicates that the presence
of toxic compounds such as Chlorpyrifos does not negatively affect the proper growth of
these strains. According to the ANOVA analysis, a higher difference was observed between
different concentrations of the agricultural runoff. However, the biomass concentration
achieved by all three strains was lower than the control (BG11 and Bold Basal media).
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Table 1. Chemical analysis of agricultural runoff.

Parameters Units Results Max Limit (Res 0631 2015)

Nitrates (NO3) mg/L NO3 35.23 analysis and report
Phosphates (PO4) mg/L PO4 4.74 analysis and report

pH pH units 7.08 6.00 to 9.00
Turbidity FAU 20 N/A

Conductivity µS 164.5 N/A
Temperature ◦C 25 N/A

Salinity ppm 102 N/A
Total Dissolved Solids ppm 117 N/A

Chemical Oxygen Demand (COD) mg/L 20.01 150.00
Biochemical Oxygen Demand (BOD5) mg/L 2 50.00

Total solids (TS) mg/L 160 N/A
Total Suspended Solids (TSS) mg/L 25 50

Volatile Suspended Solids (VSS) mg/L 12 N/A
Sedimentable Solids (SS) mL/L*h 4 1

Chlorpyrifos mg/L 1.5 0.05
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Figure 1. Strains grow in different concentrations of agricultural runoff.

The results in Figure 2 highlight that after 20 days of culture in the agricultural runoff,
the NO3 concentration can be reduced up to 88% by Scenedesmus sp., while Chlorella sp. and
Hapalosyphon sp. removed up to 85% of the total NO3 present in the wastewater removal.
According to the ANOVA analysis, there was a significant difference between the strains in
removing NO3. The removal of PO4 behaved similarly to nitrate since the values obtained
were very similar among the three strains studied, with values of up to 82% of PO4 removed
by Scenedesmus sp., followed by Chlorella sp. and Hapalosyphon sp.; however, no significant
difference was observed in the removal of PO4.
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Figure 2. Nitrate and phosphate consumption by the studied strains.

The addition of inorganic salts (Na2CO3 and NaHCO3) was evaluated as an alternative
carbon source to improve biomass production. The results show that sodium carbonate
significantly improved the biomass concentration for the three assessed strains compared
to the control (Bold Basal Medium) (Figure 3a). Scenedesmus sp. and Hapalosiphon sp.
reported the maximum biomass concentration using 1.2 g/L of Na2CO3 (0.71 and 0.83 g/L,
respectively), while Chlorella sp. obtained the largest biomass concentration up to 1 g/L
with 0.8 g/L of sodium carbonate. In general, the strain that used this carbon source was
Chlorella sp. On the other hand, when sodium bicarbonate was used, Chlorella sp. grew
up to 0.8 g/L using 1.2 g/L of NaHCO3. In the case of Scenedesmus sp., a significant
difference in biomass concentration (in comparison with the control) was achieved using
1.2 g/L of sodium bicarbonate. Finally, the final concentration of Hapalosiphon sp. was not
affected by the concentration of NaHCO3 in the media.
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tion of the three strains evaluated.
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According to the previous results, all the strains were grown with the concentration
of Na2CO3 that enhanced biomass production (0.8 g/L for Chlorella sp. and 1.2 g/L for
Scenedesmus sp. and Hapalosiphon sp.). The results show (Figure 4) that the strain with
the highest percentage (%) of removal was Chlorella sp., followed by Scenedesmus sp. and
Hapalosiphon sp. (42, 51, and 60%, respectively). More importantly, there was no statistical
difference between the carbon source and the efficiency of removing the pesticide.
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Finally, the concentration of different metabolites (carbohydrates, proteins, lipids,
and others) of the three strains evaluated (Figure 5) shows that wastewater does not
affect the metabolic level. Interesting metabolites such as carbohydrates were obtained
in concentrations higher than 20% w/w in Chlorella and Scenedesmus sp. (26% and 29%
w/w, respectively). Total lipids did not exceed 10% in both microalgae and cyanobacteria
evaluated. On the other hand, the complete proteins reported exceeded 40% w/w of the
total biomass in the three strains. Other exciting metabolites such as natural colorants, e.g.,
carotenoids, did not exceed 4% w/w, and total phycocyanins in Hapalosyphon sp. reached
concentrations of 12% w/w.
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4. Discussion

The application of microalgae and cyanobacteria cultures to remove contaminants
present in wastewater is a technological process that has gained strength at the industrial
level [32] because the biomass produced can be transformed into different products, includ-
ing biofuels (bioethanol, biogas, biodiesel, etc.), biofertilizers [33], and even bioplastics [17].

The selection of the carbon source to be used in the cultivation of microalgae and
cyanobacteria is a critical variable in the capacity to produce biomass and high value-added
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metabolites [34]. Table 2 presents different works in which Na2CO3 and NaHCO3 are used
as alternative carbon sources. According to Sivaramakrishnan and Incharoensakdi [35],
low concentrations of Na2CO3 (0.03 g/L) increase the biomass concentration of different
strains of microalgae; this is also supported by the results of Shuyu et al. [36]. On the
other hand, high concentrations of this carbon source (up to 5 g/L) can reduce the biomass
concentration in certain strains of S. obliquus [37]. According to Tu et al. [38], NaHCO3
supplementation promotes the transfer of HCO3

- ions across the plasma membrane into
chloroplasts, which significantly improves biomass concentrations and promotes lipid
synthesis. Unlike Na2CO3, high concentrations of NaHCO3 do not seem to negatively
affect the cell divisions of different microalgae species. According to data reported by
Lohman et al. [39], concentrations of up to 4 g/L NaHCO3 do not affect the growth of C.
vulgaris. The same occurs with Dunaliella salina, which can have a final biomass concentra-
tion of up to 3 g/L using 5 g/L NaHCO3 [40]. Other studies using Scenedesmus sp. CCNM
1077 [41] and Tetradesmus wisconsinensis [42] reported average biomass concentrations (0.55
and 07 g/L, respectively) using relatively high NaHCO3 concentrations (1.5 and 1.68 g/L,
respectively).

Table 2. Strains cultured with Na2CO3 and NaHCO3 as carbon sources.

Strain

Carbon Source Culture Media Biomass
(g/L) Reference

Name Concentration
(g/L)

Chlamydomonas sp.

Na2CO3

0.03 BG11

1.7
[35]Chlorella sp. 1.6

Scenedesmus sp. 1.7
Chlorella sp. (FACHB-1298) 0.005 1.89 [36]

S. Obliquus 5 n/a 0.02 [37]
Chlorella sp. LPF

NaHCO3

80 F/2 n/a [38]
C. vulgaris UTEX 395 4.2 Bold Basal 0.6 [39]

Dunaliella salina JDS 001 5.0 MJ 3.17 [40]
Scenedesmus sp. CCNM 1077 1.5 BG11 0.55 [41]

Tetradesmus wisconsinensis 1.68 Bold Basal 0.7 [42]

The tolerance of different strains and species of these microorganisms is one of the
main challenges for cultivation in wastewater. According to the present work’s results, a
high concentration of Chlorpyrifos and other nutrients does not affect the proper growth
of these strains, making this type of wastewater an exciting alternative for algal biomass
production. Studies such as the one reported by Khalid et al. [43], where a strain of C.
sorokiniana can grow on simulated agricultural wastewater, add to this type of research.

According to EU regulations, Chlorpyrifos is a banned pesticide; however, this pesti-
cide is widely used in Colombia. Therefore, scientific information on removing this type of
pesticide using microalgae is rare. According to García-Galán et al. [18], no Chlorpyrifos
concentrations were reported after nine days of cultivation. On the other hand, Matamoros
and Rodríguez [44] found that cultivating multiple microalgae strains (in which Chlorella sp.
predominates) can remove up to 50% of the concentration of this pesticide. These results
correspond to the data reported in this work, where it is possible to remove up to 50% of
this pesticide present in agricultural runoff from rice cultures.

Nutrients such as N and P are necessary for different metabolic processes critical for
the correct cellular functioning of microalgae and cyanobacteria [44]. Table 3 summarizes
the different strains evaluated for removing NO3, PO4, and pesticides from agricultural
runoff. One of the main characteristics of this group of microorganisms is their ability to
capture high concentrations of NO3. Works such as those reported by Vazirzadeh et al. [45]
demonstrate that certain strains can remove up to 100% of NO3 in high concentrations
(>1000 mg/L). Cai et al. [46] and Kumar et al. [47] reported similar removals rates. In the
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case of microalgae and cyanobacterial strains grown in agricultural runoff, NO3 removal
efficiencies are similar, ranging from 80% [43,48–50] to 95% of the total NO3 present in the
wastewater [17,51,52].

Table 3. Strains cultured on different agricultural runoff.

Strain Wastewater Pesticide NO3
Removal

PO4
Removal

Biomass
Produced Reference

Naturally occurring
algal mixture

horticultural
wastewater n/a 86% 52% 0.51 g/L [48]

C. vulgaris simulated
agricultural runoff n/a 85% 91% 4.2 g/L [17]

Naturally occurring
algal mixture agricultural runoff n/a 0.72 g m−2 d−1 b 0.37 g m−2 d−1 c 11.45 g m−2 d−1 [51]

Naturally occurring
algal mixture

peri-urban
agricultural runoff

Multiple
pesticides
including

Chlorpyrifos

54% 100% 6.9 gVSS m−2 d−1 a [18]

microalgae consortium agricultural
drainage water n/a n/a 0.64 g/L [44]

filamentous
green algae

agricultural
stormwater n/a 6 22 22 g m−2 d−1 [52]

Mixture of Pediastrum sp.
Chlorella sp.

Scenedesmus sp.
and Gloeothece sp.

agricultural
runoff n/a 80% 70% 0.8 g/L [49]

Mixture of Chlorella sp.
Stigeoclonium sp.

Nitzschia sp.
and Navicula sp.

agricultural runoff and
partially treated

domestic wastewater
n/a 85% 99% 0.6 g/L [50]

Chlorella sp. agricultural runoff
from rice production fields Chlorpyrifos

85% 82% 1.0 g/L
This studyScenedesmus sp. 88% 82% 0.71 g/L

Hapalosiphon sp. 85% 82% 0.83 g/L

a volatile suspended solids; b total nitrogen; c total phosphorous.

Algae are also known for their capacity to remove more significant phosphorus con-
centrations from liquid media; one of these mechanisms is the chemical precipitation of
P [53]. However, this process requires a change in the pH of the culture media [54]. In
this study, the pH did not change drastically during the culture time. The wastewater
used in this work had relatively low concentrations of NO3 and PO4 (Table 1), which were
significantly lower than those found in culture media such as Bold Basal or BG11; therefore,
the concentration of NO3 and PO4 present in this type of agricultural wastewater can be
removed to non-hazardous levels.

5. Conclusions

Due to its concentration of excess fertilizers, agricultural runoff is an exciting source
of nutrients for algal biomass production; however, different pesticides can reduce the
growth capacity of algal strains. The results show that the three strains studied (Chlorella,
Scenedesmus, and Hapalosyphon sp.) can effectively grow in undiluted agricultural runoff
and remove more than 80% of NO3 and PO4 present in this type of wastewater. On the
other hand, it was found that Chlorella sp. reported the highest biomass concentration
(1 g/L) with the lowest concentration of Na2CO3 evaluated (0.8 g/L). It was also found
that up to 40% excess Chlorpyrifos can be removed by the three strains evaluated. Finally,
the concentration of metabolites of interest, such as lipids and carbohydrates that can
be transformed into biofuels or even bioplastics, was not affected by the presence of the
pesticide. However, it is necessary to focus on other cultivation conditions (light:dark cycle,
semicontinuous cultivation) that maximize the synthesis of specific metabolites.
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