Mostrar el registro sencillo del ítem

dc.contributor.authorGuiza, Luisa
dc.contributor.authorOrozco, Luis G.
dc.contributor.authorSanchez-Galvis, Edwar
dc.contributor.authorGarcía-Martinez, Janet
dc.contributor.authorBarajas, Crisóstomo
dc.contributor.authorZUORRO, Antonio
dc.contributor.authorBarajas Solano, andres F
dc.date.accessioned2021-11-06T01:58:53Z
dc.date.available2021-11-06T01:58:53Z
dc.date.issued2018-05
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/691
dc.description.abstractThe sustained expansion of agricultural industry in Colombian high-mountain has led to an increased size of residues, especially untreated wastewater. This untreated water is an urgent matter for public and environmental health, not only by its nutrient concentration (composed especially of food residuals and feces) but also the presence of pathogens (virus, bacteria, etc.) which are discharged to the environment. The overall objective of this work is to evaluate the effect of UV-treated wastewater from a high-mountain fishery as culture media for the production of Chlorella vulgaris as a sustainable method for nutrient and water recirculation on the fishery production system. The UV-canal efficiency was evaluated by the implementation of an experimental factorial design (time, distance of the UV-lamps towards the canal, number of UV-lamps and the sample concentration) using STATISTICA 7.0 software. Results shown that time (3 to 5 minutes) and the number of lamps (3-4) of 15 Watts eliminate completely coliforms from the samples. After UV-treatment the resulting water was test as culture media for C. vulgaris production by the adjustment of C/N ratio (Sodium Carbonate/potassium nitrate) by the implementation of an experimental 23 factorial design. Results shown that higher nitrate concentrations (>0,22 g/L) and moderate carbonate concentrations (1 g/L) increase the final biomass concentration up to 4g/L in 20 days.eng
dc.format.extent6 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherChemical Engineering Transactionsspa
dc.relation.ispartofChemical Engineering Transactions ISSN: 2283-9216, 2018 vol:64 fasc: N/A págs: 517 - 522
dc.rights2018, AIDIC Servizi S.r.l.eng
dc.sourcehttps://www.aidic.it/cet/18/64/087.pdfspa
dc.titleProduction of Chlorella vulgaris Biomass on UV‐treated Wastewater as an Alternative for Environmental Sustainability on High‐Mountain Fisherieseng
dc.typeArtículo de revistaspa
dcterms.referencesAndersen R.A., Berges J.A., Harrison P.J. Watanabe M.M., 2005. Appendix A—Recipes for Freshwater and Seawater Media In Andersen, R.A.(Ed). Algal Culturing Techniques (pp 429-538). Burlington, MA: Elsevier Academic Press.spa
dcterms.referencesBorowitzka M.A. 1999. Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol, 70, 313-321.spa
dcterms.referencesChen S., Yu J., Wang H., Yu H., Quan X., 2015. A pilot-scale coupling catalytic ozonation–membrane filtration system for recirculating aquaculture wastewater treatment. Desalination 363, 37–43.spa
dcterms.referencesConverti A., Casazza A,A., Ortiz E.Y., Perego P., Borghi, M.D., 2009. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng. Process: Process Intens, 48, 1146-1151.spa
dcterms.referencesCrab R., Avnimelech Y., Defoirdt T., Bossier P., Verstraete W., 2007. Nitrogen removal techniques in aquaculture for a sustainable production. Aquacult 270, 1–14.spa
dcterms.referencesEbeling J.M., Sibrell P.L., Ogden S.R., Summerfelt S.T., 2003. Evaluation of chemical coagulation–flocculation aids for the removal of suspended solids and phosphorus from intensive recirculating aquaculture effluent discharge. Aquacult. Eng. 29, 23–42.spa
dcterms.referencesFAO., 2014. Perspectivas de la agricultura y el desarrollo rural en las Américas: Una mirada hacia América Latina y el Caribe. 1-62.spa
dcterms.referencesGao F., Li C., Yang Z., Zeng G., Feng L., Liu J., Liu M., Cai H., 2016. Continuous microalgae cultivation in aquaculture wastewater by a membrane photobioreactor for biomass production and nutrients removal. Ecol Eng, 92, 55–61.spa
dcterms.referencesGuimarães J.C., Ibáñez J., Litter M.I., Pizarro R., 2010. Desinfección del agua - Métodos de tratamiento de agua por agente químico de desinfección.spa
dcterms.referencesGondwe M.J., Guildford S.J., Hecky R.E., 2012. Tracing the flux of aquaculture derived organic wastes in the southeast arm of Lake Malawi using carbon and nitrogen stable isotopes. Aquacult 350, 8-18.spa
dcterms.referencesHassen A., Mahrouk M., Ouzari H., Cherif M., Boudabous A., 2000. UV disinfection of treated wastewater in a large-scale pilot plant and inactivation of selected bacteria in a laboratory UV device. BioresourTechnol. 74(2), 141-150.spa
dcterms.referencesLananan F., Abdul Hamid, S.H., Sakinah Din, W.N., Ali, N., Khatoon, H., Jusoh, A., Endut, A., 2014. Symbiotic bioremediation of aquaculture wastewater in reducing ammonia and phosphorus utilizing Effective Microorganism (EM-1) and microalgae (Chlorella sp.). Int Biodet & Biodeg, 95, 127-134.spa
dcterms.referencesLudzack F.J., Noran P.K., 1965. Tolerance of high salinities by conventional wastewater treatment process. J. Water Pollut. Control Fed. 37(10), 1404–1416.spa
dcterms.referencesMartins C.I.M., Eding E.H., Verdegem M.C.J., Heinsbroek L.T.N., Schneider O., Blancheton J.P., d’Orbcastel Roque E., Verreth J.A.J., 2010. New developments in recirculating aquaculture systems in Europe: a perspective on environmental sustainability. Aquac. Eng. 43, 83–93.spa
dcterms.referencesMichels M.H.A., Vaskoska M., Vermue M,H., Wijffels R.H. 2014. Growth of Tetraselmis suecica in a tubular photobioreactor on wastewater from a fish farm. Water research, 65, 290-296.spa
dcterms.referencesMoheimani N.R., Borowirzka M.A., Isdepsky A., Sing S.F., 2013. Standard methods for measuring growth of algae and their composition. In: Borowitzka, M.A, Moheimani, N.R (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 265–284.spa
dcterms.referencesMook W.T., Chakrabarti M.H., Aroua M.K., Khan G.M.A., Ali B.S., Islam M.S., Hassan M.A. 2012. Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology. Rev. Desali. 285, 1–13.spa
dcterms.referencesMuthukumaran S., Baskaran K., 2013. Organic and nutrient reduction in a fish processing facility - A case study. International Biodeterioration & Biodegradation. 85, 563-570.spa
dcterms.referencesOrdog, V., Stirk, W.A., Balint, P., van Standen, J., Lovasz, C. (2012). Changes in lipid, protein and pigment concentrations in nitrogen stressed Chlorella minutissima cultures. J App Phycol, 4, 907-914.spa
dcterms.referencesSánchez, S., Martínez, M., Espejo M, Pacheco, R., Espinola, f., Hodaifa, G. (2001) Mixotrophic culture of Chlorella pyrenoidosa with olive-mill wastewater as the nutrient medium. J Appl Phycology, 13, 443-449.spa
dcterms.referencesStatsoft, INC. 2004. STATISTICA (data analysis software system), Avaiable at: www.statsoft.com .spa
dcterms.referencesUslu L., Lsik O., Koc K., Goksan T., 2011. The effects of nitrogen deficiencies on the lipid and protein contents of Spirulina platensis. Af J Biotechnol. 10(3): 386-389.spa
dcterms.referencesVan Rijn J., 1996. The potential for integrated biological treatment systems in recirculating fish culture—a review. Aquacult 139, 181–201.spa
dcterms.referencesVezzulli L., Moreno M., Marin V., Pezzati, E., Bartoli, M., Fabiano, M., 2008. Organic waste impact of capturebased Atlantic blue fin tuna aquaculture at an exposed site in the Mediterranean Sea. Estuar. Coast. Shelf Sci. 78, 369-384.spa
dcterms.referencesWatts R., Kong S., Orr M. P., Miller G.C., Henry B. E.1995. Photocatalytic inactivation of coliform bacteria and viruses in secondary wastewater effluent. Wat. Res., 29, 95-100spa
dc.identifier.doi10.3303/CET1864087
dc.publisher.placeItaliaspa
dc.relation.citationeditionVol. 64, 2018spa
dc.relation.citationendpage522spa
dc.relation.citationstartpage517spa
dc.relation.citationvolume64spa
dc.relation.citesGuiza-Franco L., Orozco-Rojas L.G., Sanchez-Galvis M., Garcia-Martinez J.B., Barajas-Ferreira C., Zuorro A., BarajasSolano A.F., 2018, Production of chlorella vulgaris biomass on uv‐treated wastewater as an alternative for environmental sustainability on high‐mountain fisheries, Chemical Engineering Transactions, 64, 517-522 DOI: 10.3303/CET1864087
dc.relation.ispartofjournalChemical Engineering Transactionsspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem