Mostrar el registro sencillo del ítem

dc.contributor.authorBarajas Solano, andres F
dc.contributor.authorZUORRO, Antonio
dc.contributor.authorBarajas, Crisóstomo
dc.contributor.authorGarcía-Martinez, Janet
dc.contributor.authorSanchez-Galvis, Edwar
dc.contributor.authorCastellaños, Miguel A.
dc.date.accessioned2021-11-06T01:34:33Z
dc.date.available2021-11-06T01:34:33Z
dc.date.issued2018-05
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/690
dc.description.abstractMicroalgae are considered as one of the most promising alternatives for the integrated use of agro-industrial water residues and the production of metabolites of high industrial interest. This is due to algae can grow on wastewater which in turn can reduce the emission of nutrients to rivers and lakes. However, the greatest scientific-technological barrier is the concentration and separation of the biomass produced. There are several processes used at different levels (from laboratory to industrial scale) such as flocculation, centrifugation, flotation, etc. These can be very expensive or can (possibly) contaminate the biomass. Unlike the previous ones, electroflotation has been proposed as a cost-efficient method, nevertheless its final efficiency will depend heavily on the type of alga and culture medium. Taking into account the above, the present project aims to design an electroflotation system for the concentration and harvest of microalgae biomass. The effect of several factors (pH, time, voltage and distance between the electrodes) and for types of materials (Copper, Aluminium, Iron and Steel) on biomass recovery efficiency from a culture of Chlorella vulgaris UTEX 1803 was evaluated by the implementation of a Design of experiments (43 non-factorial design) using STATISTICA 7.0. Results show that, the materials with higher concentration efficiency were cooper and aluminium with 40 and 80% respectively, and the most relevant factors were distance between electrodes (1-2 cm), time (>20 min) and Voltage (>15V). In order to increase the efficiency of the overall process a new 43 experimental factorial design was proposed using as factors distance between electrodes, time, voltage and agitation. Results show that agitation positively affects the total efficiency until reaching a total concentration of the biomass (100%). It was found that a voltage close to 50V and a time greater than 25 min positively affect the final efficiency of the copper and aluminium electrodes, however aluminium has the highest efficiency (> 95%) compared to copper (<85%).eng
dc.format.extent6 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherChemical Engineering Transactionsspa
dc.relation.ispartofChemical Engineering Transactions ISSN: 2283-9216, 2018 vol:64 fasc: N/A págs: 1- 6
dc.rights2018, AIDIC Servizi S.r.l.eng
dc.sourcehttps://www.aidic.it/cet/18/64/001.pdfspa
dc.titleDesign of an Electroflotation System for the Concentration and Harvesting of Freshwater Microalgaeeng
dc.typeArtículo de revistaspa
dcterms.referencesAndersen R.A., Berges J.A., Harrison P.J. Watanabe M.M., 2005. Appendix A—Recipes for Freshwater and Seawater Media In Andersen R.A.(Ed). Algal Culturing Techniques (pp 429-538). Burlington, MA: Elsevier Academic Press.spa
dcterms.referencesBaierle F., John D.K., Souza M.P., Bjerk T.R., Moraes M.S.A., Hoeltz M., Rohlfes A.L.B., Camargo M.E., Corbellini V.A., Schneider R.C.S. 2015. Biomass from microalgae separation by electroflotation with iron and aluminum spiral electrodes. Chem Eng J, 267, 274–28.spa
dcterms.referencesChisti Y. 2007. Biodiesel from microalgae. Biotechnol. Advances, 25, 294–306.spa
dcterms.referencesGao S., Yang J., Tian J., Ma F., Tu G., Du M. 2010. Electro-coagulation–flotation process for algae removal. J Hazard Mat, 177, 336–34.spa
dcterms.referencesGolzary A., Imanian S., Abdoli M., Khodadadi A, Karbassi A. 2015. A cost-effective strategy for marine microalgae separation by electro-coagulation–flotation process aimed at bio-crude oil production: Optimization and evaluation study. Sep Purif Tech, 146, 156-165.spa
dcterms.referencesHenderson, R.K, Parsons, S.A., Jefferson, B. 2008. The impact of algal properties and pre-oxidation on solid– liquid separation of algae. Water Res., 42, 1827–1845.spa
dcterms.referencesLee A.K, Lewis D.M., Ashman P.J. 2015. Harvesting of marine microalgae by electroflocculation: The energetics, plant design, and economics. App Ener. 108, 45-53.spa
dcterms.referencesMatos C.M., Santos M., Nobre B.P., Gouveia L. 2013. Nannochloropsis sp. biomass recovery by ElectroCoagulation for biodiesel and pigment production. Bioresour Technol, 134: 219-226.spa
dcterms.referencesMisra R., Guldhe A., Singh P., Rawat I., Stenström T.A., Bux F. 2015. Evaluation of operating conditions for sustainable harvesting of microalgal biomass applying electrochemical method using non sacrificial electrodes. Bioresour Technol, 176: 1-7.spa
dcterms.referencesMolina Grima E., Acién Fernández F.G., Robles Medina A. 2003. Downstream Processing of Cell Mass and Products. In Richmond A (Ed). in Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Oxford, UK: Blackwell Publishing Ltd.spa
dcterms.referencesStatsoft, INC. STATISTICA (data analysis software system), Avaiable in: www.statsoft.com 2004.spa
dcterms.referencesUdhaya R., Benedict Bruno L., Sandhya S. 2014. Evaluation of chemical flocculation-electro flocculation for harvesting of halotolerant microalgae. Int J Env Sci. 4, 899-905.spa
dcterms.referencesZenouzi A., Ghobadian B., Hejazi, M.A., Rahnemoon P. 2013. Harvesting of Microalgae Dunaliella salina Using Electroflocculation. J Agri Sc Tech, 15(5): 879-887.spa
dcterms.referencesZhou W., Gao L., Cheng W., Chen L, Wang J., Wang H., Zhang W., Liu T. 2016. Electro-flotation of Chlorella sp. assisted with flocculation by chitosan. Algal Research, 18, 7-14.spa
dc.identifier.doi10.3303/CET1864001
dc.publisher.placeItaliaspa
dc.relation.citationeditionVol. 64, 2018spa
dc.relation.citationendpage6spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume64spa
dc.relation.citesM. A. Castellaños-Estupiñan, E. M. Sánchez-Galvis, J. B. García-Martínez, C. Barajas-Ferreira, A. Zuorro y A. F. Barajas-Solano, "Design of an Electroflotation System for the Concentration and Harvesting of Freshwater Microalgae", Chemical Engineering Transactions, vol. 64, pp. 1–6, 2018. [En línea]. Disponible: https://www.aidic.it/cet/18/64/001.pdf
dc.relation.ispartofjournalChemical Engineering Transactionsspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem