Mostrar el registro sencillo del ítem

dc.contributor.authorCotrina Sanchez, Alexander
dc.contributor.authorSalazar, Andres
dc.contributor.authorOviedo Sanabria, Carlos Humberto
dc.contributor.authorBandopadhyay, Subhajit
dc.contributor.authorMondaca, Pedro
dc.contributor.authorValentini, Riccardo
dc.contributor.authorRojas Briceño, Nilton Beltrán
dc.contributor.authorTORRES GUZMÁN, CRISTÓBAL
dc.contributor.authorOliva, Manuel
dc.contributor.authorGuzman Valqui, Betty Karina
dc.contributor.authorMeza-Mori, Gerson
dc.date.accessioned2024-04-11T16:15:49Z
dc.date.available2024-04-11T16:15:49Z
dc.date.issued2022-04-19
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/6884
dc.description.abstractSpectacled bears (SB) (Tremarctos ornatus) are the only bear species native to South America. This particular bear is the single species of its genus, and it is listed as vulnerable according to the IUCN red list. A critical SB conservation habitat is in the rural territories of the Peruvian Amazon, where anthropogenic land-use changes and landscape fragmentation threaten SB habitats. The following questions arise in this context: How much has land-use changed? How to design the establishment of ecological corridors (ECs) to support the conservation of SB?. We investigated the temporal land use and land cover changes for last 30 years (1990–2020) for a better projection of the ECs and to quantify the temporal landscape metrics. Furthermore, we integrated cloud computing, machine learning models with cost-effective techniques to delineate the ECs for SB within the rural territories. Ensemble Random Forest model associated with Google Earth Engine (GEE) was used to develop four land use and land cover (LULC) maps (for the years 1990, 2000, 2010 and 2020). The least cost path (LCP) model based on Dijkstra’s shortest path algorithm was assembled based on six variables (altitude; slope; distance to roads; distance to population centers; land use map; inventory map of SB). Then, we calculated the ECs based on the multidirectional origin-destination points, we found that forest patches increased by 57%eng
dc.format.extent19 Páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherGlobal Ecology and Conservationspa
dc.relation.ispartofGlobal Ecology and Conservation Volume 36, August 2022, e02126
dc.rightsThis is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).eng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.sourcehttps://www.researchgate.net/publication/360318379_Integrated_cloud_computing_and_cost_effective_modelling_to_delineate_the_ecological_corridors_for_Spectacled_bears_Tremarctos_ornatus_in_the_rural_territories_of_the_Peruvian_Amazonspa
dc.titleIntegrated cloud computing and cost effective modelling to delineate the ecological corridors for Spectacled bears (Tremarctos ornatus) in the rural territories of the Peruvian Amazoneng
dc.typeArtículo de revistaspa
dcterms.referencesAdriaensen, F., Chardon, J.P., De Blust, G., Swinnen, E., Villalba, S., Gulinck, H., Matthysen, E., 2003. The application of “least-cost” modelling as a functional landscape model. Landsc. Urban Plan. 64, 233–247. https://doi.org/10.1016/S0169-2046(02)00242-6.spa
dcterms.referencesAikman, S., Land-Use Alloc. Prot. thePeruvian Amaz. 599 2010 37 41.spa
dcterms.referencesAmanzo, J., 2008. Aportes del conocimiento del Oso andino en el Norte del Perú. Lima, Perú.spa
dcterms.referencesArora, A., Pandey, M., Mishra, V.N., Kumar, R., Rai, P.K., Costache, R., Punia, M., Di, L., 2021. Comparative evaluation of geospatial scenario-based land change simulation models using landscape metrics. Ecol. Indic. 128, 107810 https://doi.org/10.1016/j.ecolind.2021.107810.spa
dcterms.referencesArroyo-Rodríguez, V., Fahrig, L., Tabarelli, M., Watling, J.I., Tischendorf, L., Benchimol, M., Cazetta, E., Faria, D., Leal, I.R., Melo, F.P.L., Morante-Filho, J.C., Santos, B.A., Arasa-Gisbert, R., Arce-Pena, ˜ N., Cervantes-Lopez, ´ M.J., Cudney-Valenzuela, S., Galan-Acedo, ´ C., San-Jos´e, M., Vieira, I.C.G., Slik, J.W.F., Nowakowski, A.J., Tscharntke, T., 2020. Designing optimal human-modified landscapes for forest biodiversity conservation. Ecol. Lett. 23, 1404–1420. https:// doi.org/10.1111/ele.13535.spa
dcterms.referencesBandopadhyay, S., Pal, L., Das, R.D., 2021. Predicting gross primary productivity and PsnNet over a mixed ecosystem under tropical seasonal variability: a comparative study between different machine learning models and correlation-based statistical approaches. J. Appl. Remote Sens. 15, 1–34. https://doi.org/ 10.1117/1.jrs.15.014523.spa
dcterms.referencesBeier, P., 2019. A rule of thumb for widths of conservation corridors. Conserv. Biol. 33, 976–978. https://doi.org/10.1111/cobi.13256.spa
dcterms.referencesBreiman, L., 2001. Random forests. Random 1–122. https://doi.org/10.1201/9780429469275-8.spa
dcterms.referencesCisneros-Araujo, P., Goicolea, T., Mateo-S´ anchez, M.C., García-Vin˜as, ´ J.I., Marchamalo, M., Mercier, A., Gaston, ´ A., 2021. The role of remote sensing data in habitat suitability and connectivity modeling: insights from the cantabrian brown bear. Remote Sens. 13, 1138. https://doi.org/10.3390/rs13061138.spa
dcterms.referencesCohen, J., 1960. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20, 37–46. https://doi.org/10.1177/001316446002000104.spa
dcterms.referencesCotrina S´ anchez, A., Bandopadhyay, S., Rojas Briceno, ˜ N.B., Banerjee, P., Torres Guzman, ´ C., Oliva, M., 2021. Peruvian Amazon disappearing: Transformation of protected areas during the last two decades (2001–2019) and potential future deforestation modelling using cloud computing and MaxEnt approach. J. Nat. Conserv. 64, 126081 https://doi.org/10.1016/j.jnc.2021.126081.spa
dcterms.referencesCotrina S´ anchez, D.A., Barboza Castillo, E., Rojas Briceno, ˜ N.B., Oliva, M., Torres Guzman, C., Amasifuen Guerra, C.A., Bandopadhyay, S., 2020. Distribution models of timber species for forest conservation and restoration in the Andean-Amazonian Landscape, North of Peru. Sustainability 12, 7945. https://doi.org/10.3390/ su12197945spa
dcterms.referencesCrespo-Gascon, ´ S., Guerrero-Casado, J., 2019. The role of the spectacled bear (Tremarctos ornatus) as an umbrella species for Andean ecoregions. Wildl. Res. 46, 176. https://doi.org/10.1071/WR18056.spa
dcterms.referencesCuesta, F., Peralvo, M.F., Van Manen, F.T., 2003. Andean bear habitat use in the Oyacachi River Basin, Ecuador. Ursus 14, 198–209. https://doi.org/10.2307/ 3873019.spa
dcterms.referencesCushman, S.A., McGarigal, K., 2008. Landscape metrics. Scales Resolut. 33–51. https://doi.org/10.1007/978-1-4020-6759-4_2.spa
dcterms.referencesCushman, S.A., Elliot, N.B., Bauer, D., Kesch, K., Bahaa-el-din, L., Bothwell, H., Flyman, M., Mtare, G., Macdonald, D.W., Loveridge, A.J., 2018. Prioritizing core areas, corridors and conflict hotspots for lion conservation in southern Africa. PLoS One 13. https://doi.org/10.1371/journal.pone.0196213.spa
dcterms.referencesDeFries, R., Hansen, A., Newton, A.C., Hansen, M.C., 2005. Increasing isolation of protected areas in tropical forests over the past twenty years. Ecol. Appl. 15, 19–26. https://doi.org/10.1890/03-5258.spa
dcterms.referencesDelgado, E., Meza Mori, G., Barboza, E., Rojas Briceno, ˜ N.B., Torres Guzm´ an, C., Oliva-Cruz, M., Chavez-Quintana, S.G., Salas Lopez, ´ R., Lopez ´ de la Lama, R., Sevillano-Ríos, C.S., Sarmiento, F., 2021. Efectividad de ´ areas de conservacion ´ privada comunal en bosques montanos nublados del norte de Perú. Pirineos 176, e067. https://doi.org/10.3989/pirineos.2021.176006.spa
dcterms.referencesdos Santos, A.R., Araújo, E.F., Barros, Q.S., Fernandes, M.M., de Moura Fernandes, M.R., Moreira, T.R., de Souza, K.B., da Silva, E.F., Silva, J.P.M., Santos, J.S., Billo, D., Silva, R.F., Nascimento, G.S.P., da Silva Gandine, S.M., Pinheiro, A.A., Ribeiro, W.R., Gonçalves, M.S., da Silva, S.F., Senhorelo, A.P., Heitor, F.D., Berude, L.C., de AlmeidaTelles, L.A., 2020. Fuzzy concept applied in determining potential forest fragments for deployment of a network of ecological corridors in the Brazilian Atlantic Forest. Ecol. Indic. 115, 106423 https://doi.org/10.1016/j.ecolind.2020.106423.spa
dcterms.referencesDriezen, K., Adriaensen, F., Rondinini, C., Doncaster, C.P., Matthysen, E., 2007. Evaluating least-cost model predictions with empirical dispersal data: a case-study using radiotracking data of hedgehogs (Erinaceus europaeus). Ecol. Model. 209, 314–322. https://doi.org/10.1016/j.ecolmodel.2007.07.002.spa
dcterms.referencesFahrig, L., 2003. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515. https://doi.org/10.1146/annurev. ecolsys.34.011802.132419.spa
dcterms.referencesFarr, T.G., Rosen, P.A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., Alsdorf, D., 2007. The shuttle radar topography mission. Rev. Geophys. 45, 1–33. https://doi.org/10.1029/2005RG000183.spa
dcterms.referencesFeng, H., Li, Yuehui Y.Y., Li, Li, N., Li, Yue Y., Hu, Yu, J., Luo, H., 2021. Identifying and evaluating the ecological network of Siberian roe deer (Capreolus pygargus) in Tieli Forestry Bureau, northeast China. Glob. Ecol. Conserv. 26, e01477 https://doi.org/10.1016/j.gecco.2021.e01477.spa
dcterms.referencesFigueroa, J., Stucchi, M., 2009. El Oso Andino alcances sobre su historia natural, Primera Ed. ed. Lima, Perúspa
dcterms.referencesFigueroa Pizarro, J., 2015. Interacciones humano–oso andino Tremarctos ornatus en el Perú: consumo de cultivos y depredacion ´ de ganado. Therya 6, 251–278. https://doi.org/10.12933/therya-15-251.spa
dcterms.referencesGarcía-Rangel, S., 2012. Andean bear Tremarctos ornatus natural history and conservation. Mamm. Rev. 42, 85–119. https://doi.org/10.1111/j.1365- 2907.2011.00207.x.spa
dcterms.referencesGorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031.spa
dcterms.referencesGraves, T., Chandler, R.B., Royle, J.A., Beier, P., Kendall, K.C., 2014. Estimating landscape resistance to dispersal. Landsc. Ecol. 29, 1201–1211. https://doi.org/ 10.1007/s10980-014-0056-5.spa
dcterms.referencesGray, C.L., Hill, S.L.L., Newbold, T., Hudson, L.N., Boïrger, L., Contu, S., Hoskins, A.J., Ferrier, S., Purvis, A., Scharlemann, J.P.W., 2016. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat. Commun. 7 https://doi.org/10.1038/ncomms12306.spa
dcterms.referencesGregory, A.J., Beier, P., 2014. Response variables for evaluation of the effectiveness of conservation corridors. Conserv. Biol. 28, 689–695. https://doi.org/10.1111/ cobi.12252.spa
dcterms.referencesGriffiths, P., van der Linden, S., Kuemmerle, T., Hostert, P., 2013. A pixel-based landsat compositing algorithm for large area land cover mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 6, 2088–2101. https://doi.org/10.1109/jstars.2012.2228167.spa
dcterms.referencesGuti´errez-Chacon, ´ C., Valderrama-A, C., Klein, A.M., 2020. Biological corridors as important habitat structures for maintaining bees in a tropical fragmented landscape. J. Insect. Conserv. 24, 187–197. https://doi.org/10.1007/s10841-019-00205-2.spa
dcterms.referencesHatwell, J., Gaber, M.M., Azad, R.M.A., 2020. CHIRPS: Explaining Random Forest Classification, Artificial Intelligence Review. Springer, Netherlands. https://doi. org/10.1007/s10462-020-09833-6.spa
dcterms.referencesHeller, N.E., Zavaleta, E.S., 2009. Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biol. Conserv. 142, 14–32. https://doi.org/10.1016/j.biocon.2008.10.006.spa
dcterms.referencesHernandez, ´ A., Miranda, M.D., Arellano, E.C., Dobbs, C., 2016. Landscape trajectories and their effect on fragmentation for a Mediterranean semi-arid ecosystem in Central Chile. J. Arid Environ. 127, 74–81. https://doi.org/10.1016/j.jaridenv.2015.10.004.spa
dcterms.referencesHesselbarth, M.H.K., Sciaini, M., With, K.A., Wiegand, K., Nowosad, J., 2019. landscapemetrics: an open-source R tool to calculate landscape metrics. Ecography 42, 1648–1657. https://doi.org/10.1111/ecog.04617.spa
dcterms.referencesHong, W., Guo, R., Su, M., Tang, H., Chen, L., Hu, W., 2017. Sensitivity evaluation and land-use control of urban ecological corridors: a case study of Shenzhen, China. Land Use Policy 62, 316–325. https://doi.org/10.1016/j.landusepol.2017.01.010.spa
dcterms.referencesHu, Y., Dong, Y., Batunacun, 2018. An automatic approach for land-change detection and land updates based on integrated NDVI timing analysis and the CVAPS method with GEE support. ISPRS J. Photogramm. Remote Sens. 146, 347–359. https://doi.org/10.1016/j.isprsjprs.2018.10.008.spa
dcterms.referencesI. Goldstein, I., Paisley, S., Wallace, R., Jorgenson, J.P., Castellanos, A., Goldstein, I., Paisley, S., Wallace, R., Jorgenson, J.P., 2006. Andean Bear. – Livest. Confl.: a Rev. 17 2006 8 15 doi: 10.2192/1537-6176(2006)17[8:ABCAR]2.0.CO;2spa
dcterms.referencesIBC, 2016. Directorio 2016 Comunidades Campesinas del Perú. Lima, Perú, Perú.spa
dcterms.referencesIPBES, 2019. Global Assessment Report on Biodiversity and Ecosystem Services, Global Assessment Summary for Policymakers.spa
dcterms.referencesJeong, S., Kim, H.G., Thorne, J.H., Lee, H., Cho, Y.H., Lee, D.K., Park, C.H., Seo, C., 2018. Evaluating connectivity for two mid-sized mammals across modified riparian corridors with wildlife crossing monitoring and species distribution modeling. Glob. Ecol. Conserv. 16, e00485 https://doi.org/10.1016/j.gecco.2018.e00485.spa
dcterms.referencesKaszta, Cushman, S.A., Macdonald, D.W., 2020. Prioritizing habitat core areas and corridors for a large carnivore across its range. Anim. Conserv. 23, 607–616. https://doi.org/10.1111/acv.12575.spa
dcterms.referencesKattan, G., Hern´ andez, O.L., Goldstein, I., Rojas, V., Murillo, O., Gomez, ´ C., Restrepo, H., Cuesta, F., 2004. Range fragmentation in the spectacled bear Tremarctos ornatus in the northern Andes. Oryx 38, 155–163. https://doi.org/10.1017/S0030605304000298.spa
dcterms.referencesKool, J.T., Moilanen, A., Treml, E.A., 2013. Population connectivity: Recent advances and new perspectives. Landsc. Ecol. 28, 165–185. https://doi.org/10.1007/ s10980-012-9819-z.spa
dcterms.referencesKrosby, M., Tewksbury, J., Haddad, N.M., Hoekstra, J., 2010. Ecological connectivity for a changing climate. Conserv. Biol. 24, 1686–1689. https://doi.org/10.1111/ j.1523-1739.2010.01585.x.spa
dcterms.referencesLaurance, W.F., Camargo, J.L.C., Luiz˜ ao, R.C.C., Laurance, S.G., Pimm, S.L., Bruna, E.M., Stouffer, P.C., Bruce Williamson, G., Benítez-Malvido, J., Vasconcelos, H.L., Van Houtan, K.S., Zartman, C.E., Boyle, S.A., Didham, R.K., Andrade, A., Lovejoy, T.E., 2011. The fate of Amazonian forest fragments: a 32-year investigation. Biol. Conserv. 144, 56–67. https://doi.org/10.1016/j.biocon.2010.09.021.spa
dcterms.referencesMagidi, J., Nhamo, L., Mpandeli, S., Mabhaudhi, T., 2021. Application of the random forest classifier to map irrigated areas using google earth engine. Remote Sens. 13, 1–15. https://doi.org/10.3390/rs13050876.spa
dcterms.referencesMagris, R.A., Andrello, M., Pressey, R.L., Mouillot, D., Dalongeville, A., Jacobi, M.N., Manel, S., 2018. Biologically representative and well-connected marine reserves enhance biodiversity persistence in conservation planning. Conserv. Lett. 11 https://doi.org/10.1111/conl.12439.spa
dcterms.referencesMcClain, M.E., Cossío, R.E., 2003. The use of riparian environments in the rural Peruvian Amazon. Environ. Conserv. 30, 242–248. https://doi.org/10.1017/ S0376892903000237.spa
dcterms.referencesMcfeeters, S.K., 1996. The use of the normalized difference water index (NDWI) in the delineation of open water features (https://doi.org/doi.org/). Int. J. Remote Sens. 17, 1425–1432. https://doi.org/10.1080/01431169608948714.spa
dcterms.referencesMeza, G., Castillo, E.B., Guzman, ´ C.T., Cotrina, D.A., Guzman, B.K., Oliva, M., Bandopadhyay, S., Salas, R., Rojas, N.B., 2020. Predictive modelling of current and future potential distribution of the spectacled bear (Tremarctos ornatus) in Amazonas, northeast Peru. Animals 10, 1–21. https://doi.org/10.3390/ani10101816.spa
dcterms.referencesMINAM, 2014. Perú Reino de Bosques, Primera. ed. Perú.spa
dcterms.referencesMINAM, 2015. Mapa Nacional de Cobertura Vegetal. Lima.spa
dcterms.referencesMonteferry, B., 2019. Areas ´ de Conservacion ´ Privada en el Perú. Avances y propuestas.spa
dcterms.referencesMorandi, D.T., França, L.C., de, J., Menezes, E.S., Machado, E.L.M., da Silva, M.D., Mucida, D.P., 2020. Delimitation of ecological corridors between conservation units in the Brazilian Cerrado using a GIS and AHP approach. Ecol. Indic. 115, 106440 https://doi.org/10.1016/j.ecolind.2020.106440.spa
dcterms.referencesMorrell, N., Appleton, R.D., Arcese, P., 2021. Roads, forest cover, and topography as factors affecting the occurrence of large carnivores: the case of the Andean bear (Tremarctos ornatus). Glob. Ecol. Conserv. 26, e01473 https://doi.org/10.1016/j.gecco.2021.e01473.spa
dcterms.referencesNiman, R.J., Decamps, H., Pollock, M., 1993. The Role of Riparian Corridors in Maintaining Regional Biodiversity Author ( s): Robert J. Naiman, Henri Decamps and Michael Pollock Published by: Ecological Society of America Stable URL: 〈http://www.jstor.org/stable/1941822〉. THE ROLE OF RIPARIAN CO. Ecol. Appl. 3, 209–212spa
dcterms.referencesNowosad, J., Stepinski, T.F., 2019. Information theory as a consistent framework for quantification and classification of landscape patterns. Landsc. Ecol. 34, 2091–2101. https://doi.org/10.1007/s10980-019-00830-x.spa
dcterms.referencesOliveira-Junior, N.D., de, Heringer, G., Bueno, M.L., Pontara, V., Meira-Neto, J.A.A., 2020. Prioritizing landscape connectivity of a tropical forest biodiversity hotspot in global change scenario. Ecol. Manag. 472, 118247 https://doi.org/10.1016/j.foreco.2020.118247.spa
dcterms.referencesPaiva, P.F.P.R., de Lourdes Pinheiro Ruivo, M., da Silva Júnior, O.M., de Nazar´e Martins Maciel, M., Braga, T.G.M., de Andrade, M.M.N., dos Santos Junior, P.C., da Rocha, E.S., de Freitas, T.P.M., da Silva Leite, T.V., Gama, L.H.O.M., de Sousa Santos, L., da Silva, M.G., Silva, E.R.R., Ferreira, B.M., 2020. Deforestation in protect areas in the Amazon: a threat to biodiversity. Biodivers. Conserv. 29, 19–38. https://doi.org/10.1007/s10531-019-01867-9.spa
dcterms.referencesPeng, J., Liu, Y., Liu, Z., Yang, Y., 2017. Mapping spatial non-stationarity of human-natural factors associated with agricultural landscape multifunctionality in Beijing–Tianjin–Hebei region, China. Agric. Ecosyst. Environ. 246, 221–233. https://doi.org/10.1016/j.agee.2017.06.007.spa
dcterms.referencesPeng, J., Yang, Y., Liu, Y., Hu, Y., Du, Y., Meersmans, J., Qiu, S., 2018. Linking ecosystem services and circuit theory to identify ecological security patterns. Sci. Total Environ. 644, 781–790. https://doi.org/10.1016/j.scitotenv.2018.06.292.spa
dcterms.referencesPeyton, B., 1980. Ecology, Distribution, and Food Habits of Spectacled Bears, Tremarctos ornatus, in Peru. J. Mammal. 61, 639–652. https://doi.org/10.2307/ 1380309spa
dcterms.referencesPeyton, B., 1999. Spectacled Bear Conservation Action Plan, in: IUCN (Ed.), Status Survey and Conservation Action Plan Bears. pp. 157–164.spa
dcterms.referencesPinto, N., Keitt, T.H., 2009. Beyond the least-cost path: evaluating corridor redundancy using a graph-theoretic approach. Landsc. Ecol. 24, 253–266. https://doi.org/ 10.1007/s10980-008-9303-y.spa
dcterms.referencesReynolds, J., Wesson, K., Desbiez, A.L.J., Ochoa-Quintero, J.M., Leimgruber, P., 2016. Using remote sensing and random forest to assess the conservation status of critical cerrado habitats in Mato Grosso do Sul, Brazil. Land 5. https://doi.org/10.3390/land5020012.spa
dcterms.referencesRojas, R., Guti´errez, R., Beraún, Y., 2019. Conviviendo con el oso Andin. - diagnostico ´ Y. pautas Para. el Manejo De. los Confl. Hum. -oso 108 2019.spa
dcterms.referencesRosenthal, A., Stutzman, H., Forsyth, A., 2012. Creating Mosaic-Based Conservation Corridors to Respond to Major Threats in the Amazon Headwaters. Ecol. Restor. 30, 296–299. https://doi.org/10.3368/er.30.4.296.spa
dcterms.referencesRouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W., 1973. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetationspa
dcterms.referencesSalazar, A.A., Arellano, E.C., Munoz-s ˜ aez, ´ A., Miranda, M.D., da Silva, F.O., Zielonka, N.B., Crowther, L.P., Silva-ferreira, V., Oliveira-reboucas, P., Dicks, L.V., 2021. Restoration and conservation of priority areas of caatinga’s semi-arid forest remnants can support connectivity within an agricultural. Landsc. Land 10. https:// doi.org/10.3390/land10060550.spa
dcterms.referencesSamways, M.J., Pryke, J.S., 2016. Large-scale ecological networks do work in an ecologically complex biodiversity hotspot. Ambio 45, 161–172. https://doi.org/ 10.1007/s13280-015-0697-x.spa
dcterms.referencesS´ anchez-Cuervo, A.M., de Lima, L.S., Dallmeier, F., Garate, P., Bravo, A., Vanthomme, H., 2020. Twenty years of land cover change in the southeastern Peruvian Amazon: implications for biodiversity conservation. Reg. Environ. Change 20. https://doi.org/10.1007/s10113-020-01603-y.spa
dcterms.referencesSantos, J.S., Leite, C.C.C., Viana, J.C.C., dos Santos, A.R., Fernandes, M.M., de Souza Abreu, V., do Nascimento, T.P., dos Santos, L.S., de Moura Fernandes, M.R., da Silva, G.F., de Mendonça, A.R., 2018. Delimitation of ecological corridors in the Brazilian Atlantic Forest. Ecol. Indic. 88, 414–424. https://doi.org/10.1016/j. ecolind.2018.01.011.spa
dcterms.referencesSaura, S., Bertzky, B., Bastin, L., Battistella, L., Mandrici, A., Dubois, G., 2019. Global trends in protected area connectivity from 2010 to 2018. Biol. Conserv. 238, 108183 https://doi.org/10.1016/j.biocon.2019.07.028.spa
dcterms.referencesSchjellerup, I., Sorensen, M.K., Espinoza, C., Quipuscoa, V., Pena, V., 2003. The Forgotten Valleys /Past and Present in the Utilization of Resources in the Ceja de Selva, Peru.spa
dcterms.referencesSchmidt, J., Marques, M.R.G., Botti, S., Marques, M.A.L., 2019. Recent advances and applications of machine learning in solid-state materials science. npj Comput. Mater. 5 https://doi.org/10.1038/s41524-019-0221-0.spa
dcterms.referencesSchulz, J.J., Cayuela, L., Echeverria, C., Salas, J., Rey Benayas, J.M., 2010. Monitoring land cover change of the dryland forest landscape of Central Chile (1975-2008). Appl. Geogr. 30, 436–447. https://doi.org/10.1016/j.apgeog.2009.12.003.spa
dcterms.referencesSERFOR, 2016. Plan nacional para la conservacion ´ del oso andino (Tremarctos ornatus) en el Perú: Periodo 2016–2026. Lima, Perúspa
dcterms.referencesSERFOR, 2018. Libro Rojo de la Fauna Silvestre Amenazada del Peru, Primera ed. ed. Lima, Perú, Perú.spa
dcterms.referencesSERNANP, 2021. GEOSERNANP [WWW Document]. URL 〈https://geo.sernanp.gob.pe/visorsernanp/〉 (accessed 7.15.21)spa
dcterms.referencesShekhar, S., Xiong, H., 2008. Dijktra’s Shortest Path Algorithm, 240–240 Encycl. GIS 15. https://doi.org/10.1007/978-0-387-35973-1_296.spa
dcterms.referencesSofaer, H.R., Jarnevich, C.S., Pearse, I.S., Smyth, R.L., Auer, S., Cook, G.L., Edwards, T.C., Guala, G.F., Howard, T.G., Morisette, J.T., Hamilton, H., 2019. Development and delivery of species distribution models to inform decision-making. Bioscience 69, 544–557. https://doi.org/10.1093/biosci/biz045.spa
dcterms.referencesTamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., Adeli, S., Brisco, B., 2020. Google earth engine for geo-big data applications: a meta-analysis and systematic review. ISPRS J. Photogramm. Remote Sens. 164, 152–170. https://doi.org/10.1016/j.isprsjprs.2020.04.001.spa
dcterms.referencesTilker, A., Abrams, J.F., Nguyen, A., Horig, ¨ L., Axtner, J., Louvrier, J., Rawson, B.M., Nguyen, H.A.Q., Guegan, F., Nguyen, T.Van, Le, M., Sollmann, R., Wilting, A., 2020. Identifying conservation priorities in a defaunated tropical biodiversity hotspot. Divers. Distrib. 26, 426–440. https://doi.org/10.1111/ddi.13029.spa
dcterms.referencesToosi, N.B., Soffianian, A.R., Fakheran, S., Pourmanafi, S., Ginzler, C., Waser, L.T., 2019. Comparing different classification algorithms for monitoring mangrove cover changes in southern Iran. Glob. Ecol. Conserv. 19 https://doi.org/10.1016/j.gecco.2019.e00662.spa
dcterms.referencesTravis Belote, R., Dietz, M.S., McRae, B.H., Theobald, D.M., McClure, M.L., Hugh Irwin, G., McKinley, P.S., Gage, J.A., Aplet, G.H., 2016. Identifying corridors among large protected areas in the United States. PLoS One 11, 1–16. https://doi.org/10.1371/journal.pone.0154223.spa
dcterms.referencesVandermeer, J., Lin, B.B., 2008. The importance of matrix quality in fragmented landscapes: understanding ecosystem collapse through a combination of deterministic and stochastic forces. Ecol. Complex. 5, 222–227. https://doi.org/10.1016/j.ecocom.2008.01.001.spa
dcterms.referencesVargas, J., 2010. Clima, informe tem´ atico. Proyecto ZonificacionEcol ´ ogica ´ y Economica ´ del departamento de Amazonas.spa
dcterms.referencesWallace, R., Reinaga, A., Siles, T., Baiker, J., Goldstein, I., Ríos-Uzeda, B., Horn, R. Van, Vargas, R., V´elez-Liendo, X., Acosta, L., Albarracín, V., Amanzo, J., Torre, P.D.spa
dcterms.referencesLa, Domic, E., Enciso, M., Flores, C., Kuroiwa, A., Leite-Pitman, R., Noyce, K., Paisley, S., Pena, ˜ B., Plenge, H., Rojas, R., Pinto, V., Tapia, T., Vela, H., 2014. Unidades de Conservacion ´ Prioritarias del Oso Andino en Bolivia y en Perú, Wildlife Conservation Society, Centro de Biodiversidad y Gen´etica de la Universidad Mayor de San Simon ´ de Bolivia, Universidad Cayetano Heredia de Perú y Universidad de Antwerpen de B´elgica. La Paz, Boliviaspa
dcterms.referencesWatson, J.E.M., Dudley, N., Segan, D.B., Hockings, M., 2014. The performance and potential of protected areas. Nature 515, 67–73. https://doi.org/10.1038/ nature13947.spa
dcterms.referencesWhite, J.C., Wulder, M.A., Hobart, G.W., Luther, J.E., Hermosilla, T., Griffiths, P., Coops, N.C., Hall, R.J., Hostert, P., Dyk, A., Guindon, L., 2014. Pixel-based image compositing for large-area dense time series applications and science. Can. J. Remote Sens. 40, 192–212. https://doi.org/10.1080/07038992.2014.945827.spa
dcterms.referencesWu, J., Delang, C.O., Li, Y., Ye, Q., Zhou, J., Liu, H., He, H., He, W., 2021. Application of a combined model simulation to determine ecological corridors for western black-crested gibbons in the Hengduan Mountains, China. Ecol. Indic. 128, 107826 https://doi.org/10.1016/j.ecolind.2021.107826.spa
dcterms.referencesXu, M.H., Liu, Y.Q., Huang, Q.L., Zhang, Y.X., Luan, G.F., 2007. An improved Dijkstra’s shortest path algorithm for sparse network. Appl. Math. Comput. 185, 247–254. https://doi.org/10.1016/j.amc.2006.06.094.spa
dcterms.referencesYang, H., Chen, W., Chen, X., 2017. Regional ecological network planning for biodiversity conservation: a case study of China’s Poyang lake eco-economic region. Pol. J. Environ. Stud. 26, 1825–1833. https://doi.org/10.15244/pjoes/68877.spa
dcterms.referencesYunkawasi, 2021. Yunkawasi [WWW Document]. Proy. Oso Andin. una poblacion ´ osos muy peculiar. URL 〈https://www.yunkawasiperu.org/oso-andino.html〉 (accessed 9.27.21).spa
dcterms.referencesZeferino, L.B., Souza, L.F.T. de, Amaral, C.H. do, Fernandes Filho, E.I., Oliveira, T.S. de, 2020. Does environmental data increase the accuracy of land use and land cover classification? Int. J. Appl. Earth Obs. Geoinf. 91, 102128 https://doi.org/10.1016/j.jag.2020.102128.spa
dcterms.referencesZemanova, M.A., Perotto-Baldivieso, H.L., Dickins, E.L., Gill, A.B., Leonard, J.P., Wester, D.B., 2017. Impact of deforestation on habitat connectivity thresholds for large carnivores in tropical forests. Ecol. Process. 6, 1–11. https://doi.org/10.1186/s13717-017-0089-1.spa
dc.identifier.doi10.1016/j.gecco.2022.e02126
dc.relation.citationeditionVol.36 No. (2022)spa
dc.relation.citationendpage19spa
dc.relation.citationissue(2022)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume36spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalSpectacled bearseng
dc.subject.proposalAmazoneng
dc.subject.proposalEcological corridorseng
dc.subject.proposalDijkstra’s algorithmeng
dc.subject.proposalCloud computingeng
dc.subject.proposalLatin Americaeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Excepto si se señala otra cosa, la licencia del ítem se describe como This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).