Mostrar el registro sencillo del ítem
A Technoeconomic Resilience and Exergy Analysis Approach for the Evaluation of a Vaccine Production Plant in North-East Colombia
dc.contributor.author | González-Delgado, Angel Darío | |
dc.contributor.author | García-Martinez, Janet | |
dc.contributor.author | Barajas Solano, andres F | |
dc.date.accessioned | 2024-04-05T14:15:25Z | |
dc.date.available | 2024-04-05T14:15:25Z | |
dc.date.issued | 2022-12-24 | |
dc.identifier.uri | https://repositorio.ufps.edu.co/handle/ufps/6827 | |
dc.description.abstract | Influenza is an acute infection that can cause diabetes and heart and lung disease disorders. This illness affects more than 9 million people around the world. The best way to control the transmission of the virus is vaccination. Studies, performed in Santander, Colombia, have found the existence of this disease. Despite the above, there are no companies dedicated to producing influenza vaccines in Colombia. For the first time, exergetic analysis and technical-economic resilience are being performed as combined decision-making tools for the evaluation of an influenza vaccine production plant. The results of exergetic analysis showed that the global exergy efficiency of the process was estimated at 93%. The exergy of waste that resulted was 61.70 MJ/h. The most critical stage of the process is milling, representing 83% of the total destroyed exergy. On the other hand, the results of technoeconomic resilience showed that the break-even point capacity of the process is 2503.15 t/y, representing only 24% of the installed capacity of the plant. The analysis of the effect of raw materials cost on profits showed that the process only resists a rise of 4% in the cost of raw materials, and higher values show economic losses. A value of 215,500 USD/t establishes a critical point for the normalized variable operating costs because higher values do not provide a return on investment. | eng |
dc.format.extent | 16 Páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Sustainability (Switzerland) | spa |
dc.relation.ispartof | González-Delgado, Á.D.; García-Martínez, J.B.; Barajas-Solano, A.F. A Technoeconomic Resilience and Exergy Analysis Approach for the Evaluation of a Vaccine Production Plant in North-East Colombia. Sustainability 2023, 15, 287. https://doi.org/10.3390/su15010287 | |
dc.rights | Under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). | eng |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | spa |
dc.source | https://www.mdpi.com/2071-1050/15/1/287 | spa |
dc.title | A Technoeconomic Resilience and Exergy Analysis Approach for the Evaluation of a Vaccine Production Plant in North-East Colombia | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Warmath, C.R.; Ortega-Sanchez, I.R.; Duca, L.M.; Porter, R.M.; Usher, M.G.; Bresee, J.S.; Lafond, K.E.; Davis, W.W. Comparisons in the health and economic assessments of using quadrivalent versus trivalent influenza vaccines: A systematic literature review. Value Health 2022, in press. [Google Scholar] [CrossRef] [PubMed] | spa |
dcterms.references | Kalil, A.C.; Thomas, P.G. Influenza virus-related critical illness: Pathophysiology and epidemiology. Crit. Care 2019, 23, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version] | spa |
dcterms.references | Sellers, S.A.; Hagan, R.S.; Hayden, F.G.; Fischer, W.A. The hidden burden of influenza: A review of the extra-pulmonary complications of influenza infection. Influ. Other Respir. Viruses 2017, 11, 372–393. [Google Scholar] [CrossRef] [PubMed] [Green Version] | spa |
dcterms.references | Paget, J.; Spreeuwenberg, P.; Charu, V.; Taylor, R.J.; Iuliano, A.D.; Bresee, J.; Viboud, C. Global mortality associated with seasonal influenza epidemics: New burden estimates and predictors from the GLaMOR Project. J. Glob. Health 2019, 9, 1–12. [Google Scholar] [CrossRef] [PubMed] | spa |
dcterms.references | Walensky, R.P.; Jernigan, D.B.; Bunnell, R.; Layden, J.; Kent, C.K.; Gottardy, A.J.; Sanchez, J.N. Morbidity and Mortality Weekly Report Prevention and Control of Seasonal Influenza with Vaccines: Recommendations of the Advisory Committee on Immunization Practices, United States, 2021–2022 Influenza Season Centers for Disease Control and Prevention. MMWR Recomm. Rep. 2021, 70, 1. [Google Scholar] | spa |
dcterms.references | Loeb, M.; Roy, A.; Dokainish, H.; Dans, A.; Palileo-Villanueva, L.; Karaye, K.; Zhu, J.; Liang, Y.; Goma, F.; Damasceno, A.; et al. Influenza vaccine to reduce adverse vascular events in patients with heart failure: A multinational randomised, double-blind, placebo-controlled trial. Lancet Glob. Health 2022, 10, e1835–e1844. [Google Scholar] [CrossRef] | spa |
dcterms.references | Karlsson, E.A.; Ciuoderis, K.; Freiden, P.J.; Seufzer, B.; Jones, J.C.; Johnson, J.; Schultz-Cherry, S. Prevalence and characterization of influenza viruses in diverse species in Los Llanos, Colombia. Emerg. Microbes Infect. 2013, 2, 1–10. [Google Scholar] [CrossRef] | spa |
dcterms.references | Gasparini, R.; Amicizia, D.; Lai, P.L.; Panatto, D. Influenza vaccination: From epidemiological aspects and advances in research to dissent and vaccination policies. J. Prev. Med. Hyg. 2016, 57, E1–E4. [Google Scholar] | spa |
dcterms.references | Contreras, J.E.; Ruiz, S.L.; García, J.B.; Urbina, N.A.; López, G.L.; Barajas, A.F.; Zuorro, A. A simulation analysis of an influenza vaccine production plant in areas of high humanitarian flow. A preliminary study for the region of Norte de Santander (Colombia). Appl.Sci. 2022, 12, 183. [Google Scholar] | spa |
dcterms.references | Barragan, D.; Morales, S.A.; Kafarov, V. Exergetic analysis of combustion processes of variable mixtures of refinery residual gas: Effect of propane. Chem. Eng. Trans. 2018, 70, 1183–1188. [Google Scholar] | spa |
dcterms.references | Klemeš, J.J.; Jiang, P.; Fan, Y.; Van Bokhari, A.; Wang, X.C. COVID-19 pandemics Stage II—Energy and environmental impacts of vaccination. Renew. Sustain. Energy Rev. 2021, 150, 111400. [Google Scholar] [CrossRef] [PubMed] | spa |
dcterms.references | Crager, S.E. Improving global access to new vaccines: Intellectual property, technology transfer, and regulatory pathways. Am. J. Public Health 2018, 108, S414–S420. [Google Scholar] [CrossRef] | spa |
dcterms.references | Kawakami, T.; Kawamura, K.; Fujimori, K.; Koike, A.; Amano, F. Influence of the culture medium on the production of nitric oxide and expression of inducible nitric oxide synthase by activated macrophages in vitro. Biochem. Biophy. Rep. 2016, 5, 328–334. [Google Scholar] [CrossRef] [PubMed] [Green Version] | spa |
dcterms.references | Peters, M.S.; Peters, J.I. Plant Design and Economics for Chemical Engineers; Engineering Economics; McGraw-Hill: New York, NY, USA, 2002; Volume 5. [Google Scholar] | spa |
dcterms.references | Li, G.; Chang, Y.; Liu, T.; Yu, Z.; Liu, F.; Ma, S.; Weng, Y.; Zhang, Y. Hydrogen element flow and economic analyses of a coal direct chemical looping hydrogen generation process. Energy 2020, 206, 118243. [Google Scholar] [CrossRef] | spa |
dcterms.references | Romero, J.; Vergara, L.; Peralta, Y.; González, A. A Techno-Economic Sensitivity Approach for Development of a Palm-based Biorefineries in Colombia. Chem. Eng. Trans. 2017, 57, 13–18. [Google Scholar] [CrossRef] | spa |
dcterms.references | Herrera-Rodriguez, T.; Parejo-Palacio, V.; González-Delgado, A. Techno-economic Evaluation of Creole Avocado Biomass Valorization via Oil Production in North-colombia. Chem. Eng. Trans. 2022, 92, 409–414. [Google Scholar] [CrossRef] | spa |
dcterms.references | El-Halwagi, M. Sustainable Design through Process Integration: Fundamentals and Applications to Industrial Pollution Prevention, Resource Conservation, and Profitability Enhancement; Elsevier: Amsterdam, The Netherland, 2011. [Google Scholar] | spa |
dcterms.references | El-Halwagi, M. A return on investment metric for incorporating sustainability in process integration and improvement projects. Clean Technol. Environ. Policy 2016, 19, 611–617. [Google Scholar] [CrossRef] | spa |
dcterms.references | Terzi, R. Application of Exergy Analysis to Energy Systems; Application of Exergy: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version] | spa |
dcterms.references | González-Delgado, Á.D.; Moreno-Sader, K.A.; Martínez-Consuegra, J.D. Biorrefinación Sostenible del Camarón: Desarrollos desde la Ingeniería de Procesos Asistida por Computador; Corporación Universitaria Minuto de Dios-UNIMINUTO: Bogotá, Colombia, 2022. [Google Scholar] | spa |
dcterms.references | Herrera-Rodriguez, T.; Parejo-Palacio, V.; González-Delgado, A. Quality of Energy Conservation in an Avocado Oil Extraction Via Exergy Analysis. Chem. Eng. Trans. 2022, 91, 241–246. [Google Scholar] [CrossRef] | spa |
dcterms.references | Moreno, K.; Meramo, S.I.; González, A. Computer-aided environmental and exergy analysis as decisionmaking tools for selecting bio-oil feedstocks. Renew. Sustain. Energy Rev. 2019, 112, 42–57. [Google Scholar] [CrossRef] | spa |
dcterms.references | Arteaga-Díaz, S.J.; Meramo, S.; González-Delgado, Á.D. Computer-Aided Modeling, Simulation, and Exergy Analysis of Large-Scale Production of Magnetite (Fe3O4) Nanoparticles via Coprecipitation. ACS Omega 2021, 6, 30666–30673. [Google Scholar] [CrossRef] | spa |
dcterms.references | Szargut, J. Chemical exergies of the elements. Appl. Energy 1989, 32, 269–286. [Google Scholar] [CrossRef] | spa |
dcterms.references | Reed, J.J. Digitizing “The NBS tables of chemical thermodynamic properties: Selected values for inorganic and C1 and C2 organic substances in SI Units”. J. Res. Nat. Inst. Stand. Technol. 2020, 125, 125007. [Google Scholar] [CrossRef] [PubMed] | spa |
dcterms.references | Popovic, M.; Minceva, M. A thermodynamic insight into viral infections: Do viruses in a lytic cycle hijack cell metabolism due to their low Gibbs energy. Heliyon 2020, 6, e03933. [Google Scholar] [CrossRef] [PubMed] | spa |
dcterms.references | Lamers, P.; Roni, M.S.; Tumuluru, J.S.; Jacobson, J.J.; Cafferty, K.G.; Hansen, J.K.; Bals, B. Techno-economic analysis of decentralized biomass processing depots. Biores. Technol. 2015, 194, 205–213. [Google Scholar] [CrossRef] [PubMed] [Green Version] | spa |
dcterms.references | Nallaperuma, W.; Ekanayake, U.; Punchi-Manage, R. Identifying Factors that Affect the Downtime of a Production Process. In Proceedings of the 15th Open University Research Sessions (OURS 2017), Colombo, Sri Lanka, 16–17 November 2017. [Google Scholar] | spa |
dcterms.references | Herrera-Rodriguez, T.; Parejo-Palacio, V.; González-Delgado, Á.D. Technoeconomic sensibility analysis of industrial agar production from red algae. Chem. Eng. Trans. 2018, 70, 2029–2034. [Google Scholar] | spa |
dcterms.references | Moreno Sader, K.; León Pulido, J.; González-Delgado, Á. Evaluación de la producción de aceite crudo de palma y palmiste en el norte de Colombia mediante el análisis de exergía asistido por computador. Revista ION 2021, 34, 31–41. [Google Scholar] [CrossRef] | spa |
dcterms.references | Rajemi, M.F.; Mativenga, P.T.; Aramcharoen, A.; Velchev, S.; Kolev, I.; Ivanov, K.; Rajemi, M.F. Energy Analysis in Turning and Milling. J. Clean. Prod. 2010, 18, 149–152. [Google Scholar] | spa |
dcterms.references | González-Delgado, Á.D.; García-Martínez, J.B.; Barajas-Solano, A.F. Inherent Safety Analysis and Sustainability Evaluation of a Vaccine Production Topology in North-East Colombia. Sustainability 2022, 14, 9985. [Google Scholar] [CrossRef] | spa |
dc.identifier.doi | /10.3390/su15010287 | |
dc.relation.citationedition | Vol.15 N°.1 (2023) | spa |
dc.relation.citationendpage | 16 | spa |
dc.relation.citationissue | 1 (2023) | spa |
dc.relation.citationstartpage | 1 | spa |
dc.relation.citationvolume | 15 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.subject.proposal | exergetic analysis | eng |
dc.subject.proposal | technoeconomic resilience | eng |
dc.subject.proposal | influenza vaccines | eng |
dc.subject.proposal | exergy efficiency | eng |
dc.subject.proposal | break-even point | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Ambiente y Vida - GIAV [124]