Show simple item record

dc.contributor.authorGonzález-Delgado, Angel Darío
dc.contributor.authorGarcía-Martinez, Janet
dc.contributor.authorBarajas Solano, andres F
dc.date.accessioned2024-04-05T14:15:25Z
dc.date.available2024-04-05T14:15:25Z
dc.date.issued2022-12-24
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/6827
dc.description.abstractInfluenza is an acute infection that can cause diabetes and heart and lung disease disorders. This illness affects more than 9 million people around the world. The best way to control the transmission of the virus is vaccination. Studies, performed in Santander, Colombia, have found the existence of this disease. Despite the above, there are no companies dedicated to producing influenza vaccines in Colombia. For the first time, exergetic analysis and technical-economic resilience are being performed as combined decision-making tools for the evaluation of an influenza vaccine production plant. The results of exergetic analysis showed that the global exergy efficiency of the process was estimated at 93%. The exergy of waste that resulted was 61.70 MJ/h. The most critical stage of the process is milling, representing 83% of the total destroyed exergy. On the other hand, the results of technoeconomic resilience showed that the break-even point capacity of the process is 2503.15 t/y, representing only 24% of the installed capacity of the plant. The analysis of the effect of raw materials cost on profits showed that the process only resists a rise of 4% in the cost of raw materials, and higher values show economic losses. A value of 215,500 USD/t establishes a critical point for the normalized variable operating costs because higher values do not provide a return on investment.eng
dc.format.extent16 Páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherSustainability (Switzerland)spa
dc.relation.ispartofGonzález-Delgado, Á.D.; García-Martínez, J.B.; Barajas-Solano, A.F. A Technoeconomic Resilience and Exergy Analysis Approach for the Evaluation of a Vaccine Production Plant in North-East Colombia. Sustainability 2023, 15, 287. https://doi.org/10.3390/su15010287
dc.rightsUnder the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).eng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://www.mdpi.com/2071-1050/15/1/287spa
dc.titleA Technoeconomic Resilience and Exergy Analysis Approach for the Evaluation of a Vaccine Production Plant in North-East Colombiaeng
dc.typeArtículo de revistaspa
dcterms.referencesWarmath, C.R.; Ortega-Sanchez, I.R.; Duca, L.M.; Porter, R.M.; Usher, M.G.; Bresee, J.S.; Lafond, K.E.; Davis, W.W. Comparisons in the health and economic assessments of using quadrivalent versus trivalent influenza vaccines: A systematic literature review. Value Health 2022, in press. [Google Scholar] [CrossRef] [PubMed]spa
dcterms.referencesKalil, A.C.; Thomas, P.G. Influenza virus-related critical illness: Pathophysiology and epidemiology. Crit. Care 2019, 23, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]spa
dcterms.referencesSellers, S.A.; Hagan, R.S.; Hayden, F.G.; Fischer, W.A. The hidden burden of influenza: A review of the extra-pulmonary complications of influenza infection. Influ. Other Respir. Viruses 2017, 11, 372–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]spa
dcterms.referencesPaget, J.; Spreeuwenberg, P.; Charu, V.; Taylor, R.J.; Iuliano, A.D.; Bresee, J.; Viboud, C. Global mortality associated with seasonal influenza epidemics: New burden estimates and predictors from the GLaMOR Project. J. Glob. Health 2019, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]spa
dcterms.referencesWalensky, R.P.; Jernigan, D.B.; Bunnell, R.; Layden, J.; Kent, C.K.; Gottardy, A.J.; Sanchez, J.N. Morbidity and Mortality Weekly Report Prevention and Control of Seasonal Influenza with Vaccines: Recommendations of the Advisory Committee on Immunization Practices, United States, 2021–2022 Influenza Season Centers for Disease Control and Prevention. MMWR Recomm. Rep. 2021, 70, 1. [Google Scholar]spa
dcterms.referencesLoeb, M.; Roy, A.; Dokainish, H.; Dans, A.; Palileo-Villanueva, L.; Karaye, K.; Zhu, J.; Liang, Y.; Goma, F.; Damasceno, A.; et al. Influenza vaccine to reduce adverse vascular events in patients with heart failure: A multinational randomised, double-blind, placebo-controlled trial. Lancet Glob. Health 2022, 10, e1835–e1844. [Google Scholar] [CrossRef]spa
dcterms.referencesKarlsson, E.A.; Ciuoderis, K.; Freiden, P.J.; Seufzer, B.; Jones, J.C.; Johnson, J.; Schultz-Cherry, S. Prevalence and characterization of influenza viruses in diverse species in Los Llanos, Colombia. Emerg. Microbes Infect. 2013, 2, 1–10. [Google Scholar] [CrossRef]spa
dcterms.referencesGasparini, R.; Amicizia, D.; Lai, P.L.; Panatto, D. Influenza vaccination: From epidemiological aspects and advances in research to dissent and vaccination policies. J. Prev. Med. Hyg. 2016, 57, E1–E4. [Google Scholar]spa
dcterms.referencesContreras, J.E.; Ruiz, S.L.; García, J.B.; Urbina, N.A.; López, G.L.; Barajas, A.F.; Zuorro, A. A simulation analysis of an influenza vaccine production plant in areas of high humanitarian flow. A preliminary study for the region of Norte de Santander (Colombia). Appl.Sci. 2022, 12, 183. [Google Scholar]spa
dcterms.referencesBarragan, D.; Morales, S.A.; Kafarov, V. Exergetic analysis of combustion processes of variable mixtures of refinery residual gas: Effect of propane. Chem. Eng. Trans. 2018, 70, 1183–1188. [Google Scholar]spa
dcterms.referencesKlemeš, J.J.; Jiang, P.; Fan, Y.; Van Bokhari, A.; Wang, X.C. COVID-19 pandemics Stage II—Energy and environmental impacts of vaccination. Renew. Sustain. Energy Rev. 2021, 150, 111400. [Google Scholar] [CrossRef] [PubMed]spa
dcterms.referencesCrager, S.E. Improving global access to new vaccines: Intellectual property, technology transfer, and regulatory pathways. Am. J. Public Health 2018, 108, S414–S420. [Google Scholar] [CrossRef]spa
dcterms.referencesKawakami, T.; Kawamura, K.; Fujimori, K.; Koike, A.; Amano, F. Influence of the culture medium on the production of nitric oxide and expression of inducible nitric oxide synthase by activated macrophages in vitro. Biochem. Biophy. Rep. 2016, 5, 328–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]spa
dcterms.referencesPeters, M.S.; Peters, J.I. Plant Design and Economics for Chemical Engineers; Engineering Economics; McGraw-Hill: New York, NY, USA, 2002; Volume 5. [Google Scholar]spa
dcterms.referencesLi, G.; Chang, Y.; Liu, T.; Yu, Z.; Liu, F.; Ma, S.; Weng, Y.; Zhang, Y. Hydrogen element flow and economic analyses of a coal direct chemical looping hydrogen generation process. Energy 2020, 206, 118243. [Google Scholar] [CrossRef]spa
dcterms.referencesRomero, J.; Vergara, L.; Peralta, Y.; González, A. A Techno-Economic Sensitivity Approach for Development of a Palm-based Biorefineries in Colombia. Chem. Eng. Trans. 2017, 57, 13–18. [Google Scholar] [CrossRef]spa
dcterms.referencesHerrera-Rodriguez, T.; Parejo-Palacio, V.; González-Delgado, A. Techno-economic Evaluation of Creole Avocado Biomass Valorization via Oil Production in North-colombia. Chem. Eng. Trans. 2022, 92, 409–414. [Google Scholar] [CrossRef]spa
dcterms.referencesEl-Halwagi, M. Sustainable Design through Process Integration: Fundamentals and Applications to Industrial Pollution Prevention, Resource Conservation, and Profitability Enhancement; Elsevier: Amsterdam, The Netherland, 2011. [Google Scholar]spa
dcterms.referencesEl-Halwagi, M. A return on investment metric for incorporating sustainability in process integration and improvement projects. Clean Technol. Environ. Policy 2016, 19, 611–617. [Google Scholar] [CrossRef]spa
dcterms.referencesTerzi, R. Application of Exergy Analysis to Energy Systems; Application of Exergy: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]spa
dcterms.referencesGonzález-Delgado, Á.D.; Moreno-Sader, K.A.; Martínez-Consuegra, J.D. Biorrefinación Sostenible del Camarón: Desarrollos desde la Ingeniería de Procesos Asistida por Computador; Corporación Universitaria Minuto de Dios-UNIMINUTO: Bogotá, Colombia, 2022. [Google Scholar]spa
dcterms.referencesHerrera-Rodriguez, T.; Parejo-Palacio, V.; González-Delgado, A. Quality of Energy Conservation in an Avocado Oil Extraction Via Exergy Analysis. Chem. Eng. Trans. 2022, 91, 241–246. [Google Scholar] [CrossRef]spa
dcterms.referencesMoreno, K.; Meramo, S.I.; González, A. Computer-aided environmental and exergy analysis as decisionmaking tools for selecting bio-oil feedstocks. Renew. Sustain. Energy Rev. 2019, 112, 42–57. [Google Scholar] [CrossRef]spa
dcterms.referencesArteaga-Díaz, S.J.; Meramo, S.; González-Delgado, Á.D. Computer-Aided Modeling, Simulation, and Exergy Analysis of Large-Scale Production of Magnetite (Fe3O4) Nanoparticles via Coprecipitation. ACS Omega 2021, 6, 30666–30673. [Google Scholar] [CrossRef]spa
dcterms.referencesSzargut, J. Chemical exergies of the elements. Appl. Energy 1989, 32, 269–286. [Google Scholar] [CrossRef]spa
dcterms.referencesReed, J.J. Digitizing “The NBS tables of chemical thermodynamic properties: Selected values for inorganic and C1 and C2 organic substances in SI Units”. J. Res. Nat. Inst. Stand. Technol. 2020, 125, 125007. [Google Scholar] [CrossRef] [PubMed]spa
dcterms.referencesPopovic, M.; Minceva, M. A thermodynamic insight into viral infections: Do viruses in a lytic cycle hijack cell metabolism due to their low Gibbs energy. Heliyon 2020, 6, e03933. [Google Scholar] [CrossRef] [PubMed]spa
dcterms.referencesLamers, P.; Roni, M.S.; Tumuluru, J.S.; Jacobson, J.J.; Cafferty, K.G.; Hansen, J.K.; Bals, B. Techno-economic analysis of decentralized biomass processing depots. Biores. Technol. 2015, 194, 205–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]spa
dcterms.referencesNallaperuma, W.; Ekanayake, U.; Punchi-Manage, R. Identifying Factors that Affect the Downtime of a Production Process. In Proceedings of the 15th Open University Research Sessions (OURS 2017), Colombo, Sri Lanka, 16–17 November 2017. [Google Scholar]spa
dcterms.referencesHerrera-Rodriguez, T.; Parejo-Palacio, V.; González-Delgado, Á.D. Technoeconomic sensibility analysis of industrial agar production from red algae. Chem. Eng. Trans. 2018, 70, 2029–2034. [Google Scholar]spa
dcterms.referencesMoreno Sader, K.; León Pulido, J.; González-Delgado, Á. Evaluación de la producción de aceite crudo de palma y palmiste en el norte de Colombia mediante el análisis de exergía asistido por computador. Revista ION 2021, 34, 31–41. [Google Scholar] [CrossRef]spa
dcterms.referencesRajemi, M.F.; Mativenga, P.T.; Aramcharoen, A.; Velchev, S.; Kolev, I.; Ivanov, K.; Rajemi, M.F. Energy Analysis in Turning and Milling. J. Clean. Prod. 2010, 18, 149–152. [Google Scholar]spa
dcterms.referencesGonzález-Delgado, Á.D.; García-Martínez, J.B.; Barajas-Solano, A.F. Inherent Safety Analysis and Sustainability Evaluation of a Vaccine Production Topology in North-East Colombia. Sustainability 2022, 14, 9985. [Google Scholar] [CrossRef]spa
dc.identifier.doi/10.3390/su15010287
dc.relation.citationeditionVol.15 N°.1 (2023)spa
dc.relation.citationendpage16spa
dc.relation.citationissue1 (2023)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume15spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalexergetic analysiseng
dc.subject.proposaltechnoeconomic resilienceeng
dc.subject.proposalinfluenza vaccineseng
dc.subject.proposalexergy efficiencyeng
dc.subject.proposalbreak-even pointeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).
Except where otherwise noted, this item's license is described as Under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).