Mostrar el registro sencillo del ítem

dc.contributor.authorGarzón, Andrés
dc.contributor.authorLandínez, David A.
dc.contributor.authorRoa-Rojas, Jairo
dc.contributor.authorFajardo Tolosa, Fabio Enrique
dc.contributor.authorPeña Rodriguez, Gabriel
dc.contributor.authorParra-Vargas, C.A
dc.date.accessioned2021-11-05T20:01:47Z
dc.date.available2021-11-05T20:01:47Z
dc.date.issued2017-06-30
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/681
dc.description.abstractThis work describes the production and characterization of a composite material based on magnetite filled HDPE, which is commonly known for its magnetic properties. Composites of this kind are used in different applications such as microwave absorption, transducers and biomedical applications like drug delivery, organs tagging, etc. The samples were produced according to different volume ratios of magnetite and HDPE. The semiquantitative analysis conducted by XRD revealed the presence of hematite within the mineral magnetite used as a filler in the composites. The crystallinity degree was calculated through X-ray diffraction tests. The XRD results showed how there is an amorphous-crystalline transition due to the magnetite increasing content. The crystallinity percent (χc ) for samples filled with 40% of magnetite volume was 90% while the (χc ) for samples filled with 10% of magnetite volume was 80%. Which may be related to the increased magnetite particles into the plastic matrix for reinforcement contents up to 30% by volume, as evidenced in the images obtained through scanning electron microscopy (SEM). The samples were electrically characterized through volume resistivity measurements and electric polarization. The results showed that for ratios less than the 20% of magnetite there is no substantial reduction in the resistivity of the composite samples compared to the unfilled HDPE samples, but for magnetite ratios above 30% the composite samples showed a substantial reduction of six orders of magnitude in their volumetric resistivity. The electric polarization showed how the composite material undergoes a transition, going from an insulating material (for samples with 10% of magnetite volume) to a resistive material where the current and voltage are in phase (for samples with 30% and 40% of magnetite volume). The magnetization curves showed that the saturation magnetization (from 17,3 to 60,5 emu/g) and remanence (from 0,94 to 5 emu/g) increase in samples with high magnetite contents. The presence of the hematite phase in the samples could have affected the magnetization saturation and the remanence values in the hysteresis curves. Magnetization curves as a function of temperature showed the Verwey samples transition around the 120K and confirmed that the magnetization increases as the magnetite volume within the matrix increases. © 2017. Acad. Colomb. Cienc. Ex. Fis. Nat.eng
dc.description.abstractSe describe la producción y caracterización de un material compuesto basado en matrices de polietileno de alta densidad (HDPE) reforzadas con magnetita pulverizada. Compuestos de este tipo son usados para diferentes aplicaciones como la fabricación de escudos de absorción electromagnética, transductores, entrega focalizada de medicamentos, marcación de órganos, etc. Las muestras fueron producidas de acuerdo a diferentes proporciones en volumen de magnetita y HDPE. Los análisis semicuantitativos llevados a cabo por medio de DRX dejan en evidencia la presencia de hematita al interior de la magnetita mineral usada como refuerzo del compuesto. El porcentaje de cristalinidad de los compuestos se calculó a través de difracción de rayos X. Los resultados de la difracción mostraron una transición amorfo-cristalino del compuesto, debida al creciente contenido de magnetita al interior de la matriz. El porcentaje de cristalinidad (χc) de las muestras reforzadas con un 40% en volumen de magnetita fue del 90% mientras que para las muestras reforzadas con el 10% en volumen la cristalinidad fue del 80%. Esto puede estar ligado a la mayor proliferación de partículas de magnetita al interior de la matriz plástica para contenidos de refuerzo superiores al 30% en volumen, tal y como se evidenció en las imágenes obtenidas a través de microscopía electrónica de barrido (SEM). Las muestras fueron eléctricamente caracterizadas a través de medidas de resistividad volumétrica y polarización eléctrica. Los resultados mostraron que para proporciones del refuerzo de magnetita iguales o inferiores al 20% no hay una reducción substancial en la resistividad de los compuestos comparada con la del polietileno sin reforzar. En cambio, para proporciones de magnetita iguales o superiores al 30% en volumen los compuestos muestran una reducción en la resistividad de hasta seis ordenes de magnitud. La polarización eléctrica deja en evidencia como el material compuesto presenta una transición al pasar de ser completamente aislante (10% en volumen de magnetita) a ser un material resistivo donde la corriente y el voltaje se encuentran en fase (muestras reforzadas con 30%-40% de volumen de magnetita). Las curvas de histéresis magnética en función del campo aplicado muestran un incremento constante en la magnetización de saturación (de 17,3 a 60,5 emu/g) y en la magnetización remanente (de 0.94 emu/g a 5 emu/g), al aumentarse el contenido de magnetita en las muestras. La presencia de hematita en las muestras pudo haber afectado los valores de la magnetización de saturación y de remanencia en las curvas de histéresis magnética. Las curvas de magnetización en función de la temperatura dejan en evidencia la transición de Verwey de la magnetita alrededor de los 120K, a la vez que confirman el aumento en la magnetización de las muestras conforme el contenido del refuerzo aumenta al interior de la matriz. © 2017. Acad. Colomb. Cienc. Ex. Fis. Nat.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherRevista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturalesspa
dc.relation.ispartofRevista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales
dc.rightsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.spa
dc.sourcehttps://raccefyn.co/index.php/raccefyn/article/view/422spa
dc.titleProduction and structural, electrical and magnetic characterization of a composite material based on powdered magnetite and high density polyethylenespa
dc.typeArtículo de revistaspa
dcterms.referencesBoettcher, C J F. (1952). Theory of electric polarization. Amsterdam: Elsevier.spa
dcterms.referencesBohra M., Prasad S, Venketaramani N, Kumar N, Sahoo S C, Krishnan R. (2009). Magnetic properties of magnetite thin films close to the Verwey transition. Journal of Magnetism and Magnetic Materials. 321 (22): 3738-3741.spa
dcterms.referencesBruggeman, D A G. (1935). Berechnung verschieddener physikalischer konstanten von heterogenen Substanzen. Ann Phys. 24: 636-664.spa
dcterms.referencesBuschow, K H J. (2014). Handbook of Magnetic Materials. North Holland: Elsevier B.V.spa
dcterms.referencesCarporzen L, Gilder S A, Hart R J. (2006). Origin and implications of two Verwey transitions in the basement rocks of the Vredefort meteorite crater, South Africa. Earth and Planetary Science Letters. 251 (3-4): 305-317.spa
dcterms.referencesCosta A L, Ballarin B, Spegni A, Casoli F, Gardini D. (2012). Synthesis of nanostructured magnetic photocatalyst by colloidal approach and spray–drying technique. Journal of colloid and interface science. 388 (1): 31-39.spa
dcterms.referencesDemir A, Baykal A, Sözeri H, Topkaya R. (2014). Low temperature magnetic investigation of Fe3O4 nanoparticles filled into multiwalled carbon nanotubes. Synthetic Metals. 187: 75-80.spa
dcterms.referencesDonescu D, Raditoiu V, Spataru C I, Somoghi R, Ghiurea M, Radovici C, Fierascu R C, Schinteie G, Leca A, Kuncser V. (2012). Superparamagnetic magnetite–divinylbenzene–maleic anhydride copolymer nanocomposites obtained by dispersion polymerization. European Polymer Journal. 48(10): 1709-1716.spa
dcterms.referencesGu L, He X, Wu Z. (2014). Mesoporous Fe3O4/hydroxyapatite composite for targeted drug delivery. Materials Research Bulletin. 59: 65-68.spa
dcterms.referencesGuo Z., Park S, Hahn H T, Wei S, Moldovan M, Karki A B, Young, D P. (2007). Magnetic and electromagnetic evaluation of the magnetic nanoparticle filled polyurethane nanocomposites. Journal of applied physics. 101 (9): 09M511.spa
dcterms.referencesHamoudeh M, Faraj A A, Canet-Soulas E, Bessueille F, Léonard D, Fessi H. (2007). Elaboration of PLLAbased superparamagnetic nanoparticles: Characterization, magnetic behaviour study and in vitro relaxivity evaluation. International Journal of Pharmaceutics. 338 (1-2): 248-257.spa
dcterms.referencesHarris L A, Goff J D, Carmichael, A Y, Riffle J S, Harburn J J, St. Pierre T G, Saunders M. (2003). Magnetite Nanoparticle Dispersions Stabilized with Triblock. Copolymers. Chemistry of Materials. 15 (6): 1367-1377spa
dcterms.referencesHarrison R J, Putnis A. (1996). Magnetic properties of the magnetite-spinel solid solution: Curie temperatures, magnetic susceptibilities, and cation ordering. American Mineralogist. 81 (3-4): 375-384.spa
dcterms.referencesJackson M, Bowles J, Banerjee S. (2011). The magnetite Verwey transition (Part A). The IRM Quarterly. 20 (4): 7-10.spa
dcterms.referencesKong I, Hj Ahmad S, Hj Abdullah M, Hui D, Nazlim Yusoff A, Puryanti D. (2010). Magnetic and microwave absorbing properties of magnetite–thermoplastic natural rubber nanocomposites. Journal of Magnetism and Magnetic Materials. 322 (21):3401-3409.spa
dcterms.referencesKong I, Ahmad S H, Abdullah M H, Yusoff, A N. (2009). The effect of temperature on magnetic behavior of magnetite nanoparticles and its nanocomposites. In AIP Conf Proc. 1136: 830-834.spa
dcterms.referencesMakled M H, Matsui T, Tsuda H, Mabuchi H, El-Mansy M K, Morii, K. (2005). Magnetic and dynamic mechanical properties of barium ferrite–natural rubber composites. Journal of Materials Processing Technology. 160 (2): 229-233.spa
dcterms.referencesMansilla M V, Zysler R, Fiorani D, Suber L. (2002). Annealing effects on magnetic properties of acicular hematite nanoparticles. Physica B: Condensed Matter. 320 (1): 206-209.spa
dcterms.referencesMatweb Material Property Data. (November, 2014). Overview of materials for High Density Polyethylene (HDPE). Retrieved from Extruded.: http://www.matweb.com/search/DataSheet.aspx?MatGUID=482765fad3b443169ec28fb6f9606660.spa
dcterms.referencesMeseguer Dueñas J M, Gómez Tejedor J A, Olmos Sanchis J J, Quiles Hoyo J, Romero Colomer F. (1995). Problemas resueltos de electromagnetismo y semiconductores. Universidad Politécnica de Valencia: Servicio de Publicaciones SPUPV-99.spa
dcterms.referencesMokhtar N, Abdullah M H, Ahmad S H. (2012). Structural and Magnetic Properties of Type-M Barium Ferrite–Thermoplastic Natural Rubber Nanocomposites. Sains Malaysiana. 41 (9): 1125-1131.spa
dcterms.referencesMücke A, Raphael Cabral A. (2005). Redox and nonredox reactions of magnetite and hematite in rocks. Chemie der Erde – Geochemistry. 65 (3): 271-278.spa
dcterms.referencesOtake T, Wesolowski D J, Anovitz L M, Allard L F, Ohmoto H. (2007). Experimental evidence for non-redox transformations between magnetite and hematite under H2-rich hydrothermal conditions. Earth and Planetary Science Letters. 257 (1-2): 60-70.spa
dcterms.referencesPanwar V, Sachdev V K, Mehra, R. M. (2007). Insulator conductor transition in low-density polyethylene–graphite composites. European Polymer Journal. 43 (2): 573-585.spa
dcterms.referencesRamajo L A, Cristóbal A A, Botta P M, Porto López J M, Reboredo M M, Castro M S. (2009). Dielectric and magnetic response of Fe3O4/epoxy composites. Composites Part A: Applied Science and Manufacturing, 40 (4): 388-393.spa
dcterms.referencesRazzaq M Y, Anhalt M, Frormann, Weidenfeller B. (2007). Thermal, electrical and magnetic studies of magnetite filled polyurethane shape memory polymers. Materials Science and Engineering A. 444 (1–2): 227-235spa
dcterms.referencesRobinson P, Harrison R J, McEnroe S A, Hargraves, R B. (2004). Nature and origin of lamellar magnetism in the hematite-ilmenite series. American Mineralogist. 89 (5-6): 725-747.spa
dcterms.referencesRosales C, Perera R, Matos M, Poirier T, Héctor R, Palacios J, et al. (2006). Influencia de la morfología sobre las propiedades mecánicas de nanocompuestos y mezclas de polímeros. Revista Latinoamericana de Metalurgia Y Materiales. 26 (1-2): 3-19.spa
dcterms.referencesSalazar Mejía C, Landínez Téllez D A, Roa-Rojas J. (2009). Caracterización Magnetoeléctrica del Nuevo Material de Tipo Perovskita Sr2TiMno6. Revista Colombiana de Física. 4 (2): 317-319.spa
dcterms.referencesStewart S J, Borzi R A, Cabanillas E D, Punte G, Mercader R C. (2003). Effects of milling-induced disorder on the lattice parameters and magnetic properties of hematite. Journal of magnetism and magnetic materials. 260 (3): 447-454.spa
dcterms.referencesStewart M, Cain M G. (1999). Ferroelectric Hysteresis Measurement & Analysis. NPL Report CMMT(A). 152: 1-57.spa
dcterms.referencesTabiś W, Tarnawski Z, Kąkol Z, Król G, Kołodziejczyk A, Kozłowski A, Honig J. M. (2007). Magnetic and structural studies of magnetite at the Verwey transition. Journal of alloys and compounds. 442 (1): 203-205.spa
dcterms.referencesTadić M, Čitaković N, Panjan M, Stojanović Z, Marković D, Spasojević, V. (2011). Synthesis, morphology, microstructure and magnetic properties of hematite submicron particles. Journal of Alloys and Compounds. 509 (28):7639-7644.spa
dcterms.referencesThapa D, Palkar V R, Kurup M B, Malik S K. (2004). Properties of magnetite nanoparticles synthesized through a novel chemical route. Materials Letters. 58 (21): 2692-2694.spa
dcterms.referencesWeidenfeller B, Höfer M, Schilling F. (2002). Thermal and electrical properties of magnetite filled polymers. Composites Part A: Applied Science and Manufacturing. 33 (8): 1041-1053.spa
dcterms.referencesZhang J, Rana S, Srivastava R S, Misra, R D K. (2008). On the chemical synthesis and drug delivery response of folate receptor-activated, polyethylene glycol-functionalized magnetite nanoparticles. Acta Biomaterialia. 4 (1): 40-48.spa
dcterms.referencesZhang Z, Church N, Lappe S C, Reinecker M, Fuith A, Saines, P J, Carpenter, M A. (2001). Elastic and anelastic anomalies associated with the antiferromagnetic ordering transition in wüstite, FexO. Journal of Physics: Condensed Matter. 24 (21): 215-404.spa
dcterms.referencesZhao H, Saatchi K, Häfeli U O. (2009). Preparation of biodegradable magnetic microspheres with poly(lactic acid)- coated magnetite. Journal of Magnetism and Magnetic Materials. 321 (10): 1356-1363.spa
dcterms.referencesZheng X, Zhou S, Xiao Y, Yu X, Li X, Wu P. (2009). Shape memory effect of poly(d,l-lactide)/Fe3O4 nanocomposites by inductive heating of magnetite particles. Colloids and Surfaces B: Biointerfaces. 71 (1): 67-72.spa
dcterms.referencesZysler R D, Vasquez-Mansilla M, Arciprete C, Dimitrijewits M, Rodriguez-Sierra D, Saragovi C. (2001). Structure and magnetic properties of thermally treated nanohematite. Journal of magnetism and magnetic materials. 224 (1): 39-48.spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.422
dc.publisher.placeColombiaspa
dc.relation.citationeditionVol.41 No.159.(2017)spa
dc.relation.citationendpage167spa
dc.relation.citationissue159 (2017)spa
dc.relation.citationstartpage154spa
dc.relation.citationvolume41spa
dc.relation.citesGarzón, A. O., Landínez, D. A., Roa-Rojas, J., Fajardo-Tolosa, F. E., Peña-Rodríguez, G., & Parra-Vargas, C. A. (2017). Producción y caracterización estructural, eléctrica y magnética de un material compuesto a base de magnetita pulverizada y polietileno de alta densidad. RACCEFYN, 41(159), 154–167. https://doi.org/10.18257/raccefyn.422
dc.relation.ispartofjournalRevista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturalesspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalHigh density polyethyleneeng
dc.subject.proposalMagnetiteeng
dc.subject.proposalPlastic compositeseng
dc.subject.proposalStructural properties electric propertieseng
dc.subject.proposalMagnetic propertieseng
dc.subject.proposalPolietileno de alta densidadspa
dc.subject.proposalMagnetitaspa
dc.subject.proposalMateriales plásticos compuestosspa
dc.subject.proposalPropiedades estructuralesspa
dc.subject.proposalPropiedades eléctricasspa
dc.subject.proposalPropiedades magnéticasspa
dc.title.translatedProducción y caracterización estructural, eléctrica y magnética de un material compuesto a base de magnetita pulverizada y polietileno de alta densidad.
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem