Mostrar el registro sencillo del ítem
Tribocorrosion-Resistant Surface for TiO2 as a Function of Load and Sliding Speed
dc.contributor.author | Bautista-Ruiz, Jorge | |
dc.contributor.author | Aperador Chaparro, William Arnulfo | |
dc.contributor.author | Sanchez Molina, Jorge | |
dc.date.accessioned | 2024-04-02T14:37:42Z | |
dc.date.available | 2024-04-02T14:37:42Z | |
dc.date.issued | 2023-02-21 | |
dc.identifier.uri | https://repositorio.ufps.edu.co/handle/ufps/6782 | |
dc.description.abstract | The applications projected in the coatings are in implants with the lower extremities since they require a great load capacity and are essential for walking. Therefore, the use of devices or implants is necessary for recovery, osteosynthesis, and fixation. The tribocorrosive behavior of nanostructured compounds based on titanium oxide with an intermediate layer of gold deposited on titanium substrates was determined. These coatings were obtained using the reactive magnetron sputtering technique. Tribocorrosive properties were evaluated at sliding speeds of 3500 mm/min, 4500 mm/min, 6000 mm/min, 7500 mm/min, and 9000 mm/min with loads of 1 N, 2 N, 3 N, 4 N, and 5 N. The coatings were characterized by X-ray photoemission spectroscopy and X-ray diffraction, and the surface roughness was analyzed by atomic force microscopy. The dual mechanical and electrochemical wear tests were carried out with a potentiostat coupled to a pin on the disk system. The system was in contact with a hanks solution (37 ◦C), which acted as a lubricant. Structural characterization made it possible to identify the TiO2 compound. In the morphological characterization, it was found that the substrate influenced the surface properties of the coatings. The tribological behavior estimated by the wear rates showed less wear at higher load and sliding speeds. It was shown that it is possible to obtain coatings with better electrochemical and tribological performance by controlling the applied load and slip speed variables. In this study, a significant decrease corresponding to 64% was obtained, specifically in the speed of deterioration, and especially for a load of 5 N, depending on the sliding speed that went from 0.2831 mpy (Mils penetration per year) to 3500 mm/min compared to 0.1045 mpy at 9000 mm/min, which is explained by the mechanical blockage induced by the coating. | eng |
dc.format.extent | 14 Páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Lubricants | spa |
dc.relation.ispartof | Bautista-Ruiz, J.; Aperador, W.; Sánchez-Molina, J. TribocorrosionResistant Surface for TiO2 as a Function of Load and Sliding Speed. Lubricants 2023, 11, 91. https:// doi.org/10.3390/lubricants11030091 | |
dc.rights | under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). | eng |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | spa |
dc.source | https://www.mdpi.com/2075-4442/11/3/91 | spa |
dc.title | Tribocorrosion-Resistant Surface for TiO2 as a Function of Load and Sliding Speed | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Sahlin, H.; Contreras, R.; Gaskill, D.F.; Bjursten, L.M.; Frangos, J.A. Anti-inflammatory properties of micropatterned titanium coatings. J. Biomed. Mater. Res. 2006, 77, 43–49. [CrossRef] [PubMed] | spa |
dcterms.references | Contreras, R.; Sahlin, H.; Frangos, J.A. Titanate biomaterials with enhanced antiinflammatory properties. J. Biomed. Mater. Res. 2007, 80, 480–485. [CrossRef] [PubMed] | spa |
dcterms.references | Ying, M.; Jianxin, D.; Zhihui, Z.; Qinghao, S. Enhanced wear resistance of AlTiN coatings by ultrasonic rolling substrate texturing. Surf. Coat. Technol. 2022, 447, 128841. | spa |
dcterms.references | Lin-Chan, S.; Nielsen, D.H.; Yack, J.; Hsu, M.; Shurr, D. The effects of added prosthetic mass on physiologic responses and stride frequency during multiple speeds of walking in persons with transtibial amputation. Arch. Phys. Med. Rehabil. 2003, 84, 1865–1871. [CrossRef] | spa |
dcterms.references | Racic, V.; Pavic, A.; Brownjohn, J. Experimental identification and analytical modelling of human walking forces: Literature review. J. Sound Vib. 2009, 326, 1–49. [CrossRef] | spa |
dcterms.references | Abadi, F.; Ariffin Muhamad, T.; Salamuddin, N. Energy Expenditure through Walking: Meta-Analysis on Gender and Age. J. Sound Vib. 2010, 7, 512–521. [CrossRef] | spa |
dcterms.references | Skjöldebrand, C.; Joanne, L.; Hatto, P.; Bryant, M.; Hall, R.; Persson, C. Current status and future potential of wear-resistant coatings and articulating surfaces for hip and knee implants. Mater. Today 2022, 15, 100270. [CrossRef] | spa |
dcterms.references | Saitoh, S.; Nezu, T.; Sasaki, K.; Taira, M.; Miura, H. Effect of gold deposition onto titanium on the adsorption of alkanethiols as the protein linker functionalizing the metal Surface. Dent. Mater. J. 2014, 33, 111–117. [CrossRef] | spa |
dcterms.references | Visai, L.; De Nardo, L.; Punta, C.; Melone, L.; Cigada, A.; Imbriani, M.; Arciola, C.R. Titanium oxide antibacterial surfaces in biomedical devices. Int. J. Artif. Organs 2011, 34, 929–946. [CrossRef] | spa |
dcterms.references | Albrektsson, T.; Johansson, C. Osteoinduction, osteoconduction and osseointegration. Eur. Spine J. 2001, 10, 96–101. | spa |
dcterms.references | Csarnovics, I.; Hajdu, P.; Biri, S.; Heged ˝us, C.; Kökényesi, S.; Rácz, R.; Csik, A. Preliminary studies of creation of gold nanoparticles on titanium surface towards biomedical applications. Vacuum 2016, 126, 55–58. [CrossRef] | spa |
dcterms.references | Heo, D.N.; Ko, W.K.; Lee, H.R.; Lee, S.J.; Lee, D.; Um, S.H.; Lee, J.H.; Woo, Y.H.; Zhang, L.G.; Lee, D.W.; et al. Titanium dental implants surface-immobilized with gold nanoparticles as osteoinductive agents for rapid osseointegration. J. Colloid Interface Sci. 2016, 469, 129–137. [CrossRef] [PubMed] | spa |
dcterms.references | Wang, Z.; Zhang, J.; Hu, J.; Yang, G. Gene-activated titanium implants for gene delivery to enhance osseointegration. Biomater. Adv. 2022, 143, 213176. [CrossRef] | spa |
dcterms.references | Oros-Ruiz, S.; Pedraza-Avella, J.A.; Guzmán, C. Effect of Gold Particle Size and Deposition Method on the Photodegradation of 4-Chlorophenol by Au/TiO2 . Top. Catal. 2011, 54, 519–526. [CrossRef] | spa |
dcterms.references | Jang, D.; Yu, S.; Chung, K.; Yoo, J.; Marques-Mota, F.; Wang, J.; Ahn, D.J.; Kim, S.; Kim, D.H. Direct deposition of anatase TiO2 on thermally unstable gold nanobipyramid: Morphology-conserved plasmonic nanohybrid for combinational photothermal and photocatalytic cancer therapy. Appl. Mater. Today 2022, 27, 101472. [CrossRef] | spa |
dcterms.references | Khung, R.; Sukjai-Suansuwan, N. Effect of gold sputtering on the adhesion of porcelain to cast and machined titanium. J. Prosthet. Dent. 2013, 110, 41–46. [CrossRef] | spa |
dcterms.references | Shekhawat, D.; Singh, A.; Banerjee, M.K.; Singh, T.; Patnaik, A. Bioceramic composites for orthopaedic applications: A comprehensive review of mechanical, biological, and microstructural properties. Ceram. Int. 2021, 47, 3013–3030. [CrossRef] | spa |
dcterms.references | Moghadasi, K.; Syahid, M.; Ashraf, M.; Zulhiqmi, M.; Raja, S.; Wu, B.; Yamani, M.; Ridha, B.M.; Yusof, F.; Fadzil, M.; et al. A review on biomedical implant materials and the effect of friction stir based techniques on their mechanical and tribological properties. J. Mater. Res. Technol. 2022, 17, 1054–1121. [CrossRef] | spa |
dcterms.references | Yang, J.; Bai, S.; Sun, J.; Wu, H.; Sun, S.; Wang, S.; Xu, D. Microstructural understanding of the oxidation and inter-diffusion behavior of Cr-coated Alloy 800H in supercritical water. Corros. Sci. 2023, 211, 110910. [CrossRef] | spa |
dcterms.references | Yate, L.; Coy, E.; Gregurec, D.; Aperador, W.; Moya, S.; Wang, G. Nb–C Nanocomposite Films with Enhanced Biocompatibility and Mechanical Properties for Hard-Tissue Implant Applications. ACS Appl. Mater. Interfaces 2015, 7, 6351–6358. [CrossRef] | spa |
dcterms.references | Oropeza, F.; Egdell, R. Control of valence states in Rh-doped TiO2 by Sb co-doping: A study by high resolution X-ray photoemission spectroscopy. Chem. Phys. Lett. 2011, 515, 249–253. [CrossRef] | spa |
dcterms.references | Köbl, J.; Fernández, C.; Augustin, L.; Kataev, E.; Franchi, S.; Tsud, N.; Pistonesi, C.; Pronsato, E.; Jux, N.; Lytken, O.; et al. Benzohydroxamic acid on rutile TiO2 (110)—(1×1)– a comparison of ultrahigh-vacuum evaporation with deposition from solution. Appl. Surf. Sci. 2022, 716, 121955. [CrossRef] | spa |
dcterms.references | Dumbuya, K.; Cabailh, G.; Lazzari, R.; Jupille, J.; Ringel, L.; Pistor, M.; Lytken, O.; Steinrück, H.-P.; Gottfried, J. Evidence for an active oxygen species on Au/TiO2 (110) model catalysts during investigation with in situ X-ray photoelectron spectroscopy. Catal. Today 2012, 181, 20–25. [CrossRef] | spa |
dcterms.references | Zheng, L.; Yuan, X. An investigation on the performance of gold layer-based cyanide-free HAuCl4 electroplating process under different power conditions. Mater. Today Commun. 2022, 31, 103711. [CrossRef] | spa |
dcterms.references | Alférez, F.; Olaya, J.; Bautista-Ruiz, J. Síntesis y evaluación de resistencia a la corrosión de recubrimientos de SiO2 -TiO2 -ZrO2 -BiO2 sobre acero inoxidable 316L producidos por sol-gel. Bol. Soc. Esp. Ceram. Vidr. 2018, 57, 195–206. [CrossRef] | spa |
dcterms.references | Balarabe, B.Y.; Maity, P. Visible light-driven complete photocatalytic oxidation of organic dye by plasmonic Au-TiO2 nanocatalyst under batch and continuous flow condition. Colloids Surf. A Physicochem. Eng. Asp. 2022, 655, 130247. [CrossRef] | spa |
dcterms.references | Bazaka, O.; Bazaka, K.; Khanh, V.; Levchenko, I.; Jacob, M.; Estrin, Y.; Lapovok, R.; Chichkov, B.; Fadeeva, E.; Kingshott, P.; et al. Effect of titanium surface topography on plasma deposition of antibacterial polymer coatings. Appl. Surf. Sci. 2020, 521, 146375. [CrossRef] | spa |
dcterms.references | Jun-Li, Y.; Wen, H.; Zhang, Q.; Adachi, Y.; Arima, E.; Kinoshita, Y.; Nomura, H.; Ma, Z.; Kou, L.; Tsukuda, Y.; et al. Stable contrast mode on TiO2 (110) surface with metal-coated tips using AFM. Ultramicroscopy 2018, 191, 51–55. | spa |
dcterms.references | Dong, P.; Zhang, Y.; Zhu, S.; Nie, Z.; Ma, H.; Liu, Q.; Li, J. First-Principles Study on the Adsorption Characteristics of Corrosive Species on Passive Film TiO2 in a NaCl Solution Containing H2S and CO2 . Metals 2022, 12, 1160. [CrossRef] | spa |
dcterms.references | Madhusmita, M.; Arunachalam, N. Effects of electrophoretic deposited graphene coating thickness on the corrosion and wear behaviors of commercially pure titanium. Surf. Coat. Technol. 2022, 450, 128946. | spa |
dcterms.references | Xu, Z.; Yate, L.; Qiu, Y.; Aperador, W.; Coy, E.; Jiang, B.; Moya, S.; Wang, G.; Pan, H. Potential of niobium-based thin films as a protective and osteogenic coating for dental implants: The role of the nonmetal elements. Mater. Sci. Eng. C 2019, 96, 166–175. [CrossRef] [PubMed] | spa |
dcterms.references | Song, B.; Hua, Y.; Zhou, C.; Li, Y.; Yang, L.; Song, Z. Fabrication and anticorrosion behavior of a bi-phase TaNbHfZr/CoCrNi multilayer coating through magnetron sputtering. Corros. Sci. 2022, 196, 110020. [CrossRef] | spa |
dcterms.references | Moreno, H.; Caicedo, J.C.; Amaya, C.; Cabrera, G.; Yate, L.; Aperador, W.; Prieto, P. Improvement of the electrochemical behavior of steel surfaces using a TiN[BCN/BN]n/c-BN multilayer system. Diam. Relat. Mater. 2011, 20, 588–595. [CrossRef] | spa |
dcterms.references | Jiang, C.; Xiong, W.; Cai, W.; Zhu, Y.; Wang, Y. Preload loss of high-strength bolts in friction connections considering corrosion damage and fatigue loading. Eng. Fail. Anal. 2022, 137, 106416. [CrossRef] | spa |
dcterms.references | Zhang, H.; Kim, T.; Swarts, J.; Yu, Z.; Su, R.; Liu, L.; Howland, W.; Lucadamo, G.; Couet, A. Nano-porosity effects on corrosion rate of Zr alloys using nanoscale microscopy coupled to machine learning. Corros. Sci. 2022, 208, 110660. [CrossRef] | spa |
dcterms.references | Hu, C.; Xie, X.; Ren, K. A facile method to prepare stearic acid-TiO2/zinc composite coating with multipronged robustness, self-cleaning property, and corrosion resistance. J. Alloys Compd. 2021, 882, 160636. [CrossRef] | spa |
dcterms.references | Zhang, P.; Liu, J.; Gao, Y.; Liu, Z.; Mai, Q. Effect of heat treatment process on the micro machinability of 7075 aluminum alloy. Vacuum 2023, 207, 111574. [CrossRef] | spa |
dc.identifier.doi | https:// doi.org/10.3390/lubricants11030091 | |
dc.relation.citationedition | Vol.11N° 91.(2023) | spa |
dc.relation.citationendpage | 14 | spa |
dc.relation.citationissue | 91(2023) | spa |
dc.relation.citationstartpage | 1 | spa |
dc.relation.citationvolume | 11 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.subject.proposal | thin films | eng |
dc.subject.proposal | titanium oxide | eng |
dc.subject.proposal | gold | eng |
dc.subject.proposal | corrosion | eng |
dc.subject.proposal | tribology | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |