Show simple item record

dc.contributor.authorBautista-Ruiz, Jorge
dc.contributor.authorAperador Chaparro, William Arnulfo
dc.contributor.authorSanchez Molina, Jorge
dc.date.accessioned2024-04-02T14:37:42Z
dc.date.available2024-04-02T14:37:42Z
dc.date.issued2023-02-21
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/6782
dc.description.abstractThe applications projected in the coatings are in implants with the lower extremities since they require a great load capacity and are essential for walking. Therefore, the use of devices or implants is necessary for recovery, osteosynthesis, and fixation. The tribocorrosive behavior of nanostructured compounds based on titanium oxide with an intermediate layer of gold deposited on titanium substrates was determined. These coatings were obtained using the reactive magnetron sputtering technique. Tribocorrosive properties were evaluated at sliding speeds of 3500 mm/min, 4500 mm/min, 6000 mm/min, 7500 mm/min, and 9000 mm/min with loads of 1 N, 2 N, 3 N, 4 N, and 5 N. The coatings were characterized by X-ray photoemission spectroscopy and X-ray diffraction, and the surface roughness was analyzed by atomic force microscopy. The dual mechanical and electrochemical wear tests were carried out with a potentiostat coupled to a pin on the disk system. The system was in contact with a hanks solution (37 ◦C), which acted as a lubricant. Structural characterization made it possible to identify the TiO2 compound. In the morphological characterization, it was found that the substrate influenced the surface properties of the coatings. The tribological behavior estimated by the wear rates showed less wear at higher load and sliding speeds. It was shown that it is possible to obtain coatings with better electrochemical and tribological performance by controlling the applied load and slip speed variables. In this study, a significant decrease corresponding to 64% was obtained, specifically in the speed of deterioration, and especially for a load of 5 N, depending on the sliding speed that went from 0.2831 mpy (Mils penetration per year) to 3500 mm/min compared to 0.1045 mpy at 9000 mm/min, which is explained by the mechanical blockage induced by the coating.eng
dc.format.extent14 Páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherLubricantsspa
dc.relation.ispartofBautista-Ruiz, J.; Aperador, W.; Sánchez-Molina, J. TribocorrosionResistant Surface for TiO2 as a Function of Load and Sliding Speed. Lubricants 2023, 11, 91. https:// doi.org/10.3390/lubricants11030091
dc.rightsunder the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).eng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://www.mdpi.com/2075-4442/11/3/91spa
dc.titleTribocorrosion-Resistant Surface for TiO2 as a Function of Load and Sliding Speedeng
dc.typeArtículo de revistaspa
dcterms.referencesSahlin, H.; Contreras, R.; Gaskill, D.F.; Bjursten, L.M.; Frangos, J.A. Anti-inflammatory properties of micropatterned titanium coatings. J. Biomed. Mater. Res. 2006, 77, 43–49. [CrossRef] [PubMed]spa
dcterms.referencesContreras, R.; Sahlin, H.; Frangos, J.A. Titanate biomaterials with enhanced antiinflammatory properties. J. Biomed. Mater. Res. 2007, 80, 480–485. [CrossRef] [PubMed]spa
dcterms.referencesYing, M.; Jianxin, D.; Zhihui, Z.; Qinghao, S. Enhanced wear resistance of AlTiN coatings by ultrasonic rolling substrate texturing. Surf. Coat. Technol. 2022, 447, 128841.spa
dcterms.referencesLin-Chan, S.; Nielsen, D.H.; Yack, J.; Hsu, M.; Shurr, D. The effects of added prosthetic mass on physiologic responses and stride frequency during multiple speeds of walking in persons with transtibial amputation. Arch. Phys. Med. Rehabil. 2003, 84, 1865–1871. [CrossRef]spa
dcterms.referencesRacic, V.; Pavic, A.; Brownjohn, J. Experimental identification and analytical modelling of human walking forces: Literature review. J. Sound Vib. 2009, 326, 1–49. [CrossRef]spa
dcterms.referencesAbadi, F.; Ariffin Muhamad, T.; Salamuddin, N. Energy Expenditure through Walking: Meta-Analysis on Gender and Age. J. Sound Vib. 2010, 7, 512–521. [CrossRef]spa
dcterms.referencesSkjöldebrand, C.; Joanne, L.; Hatto, P.; Bryant, M.; Hall, R.; Persson, C. Current status and future potential of wear-resistant coatings and articulating surfaces for hip and knee implants. Mater. Today 2022, 15, 100270. [CrossRef]spa
dcterms.referencesSaitoh, S.; Nezu, T.; Sasaki, K.; Taira, M.; Miura, H. Effect of gold deposition onto titanium on the adsorption of alkanethiols as the protein linker functionalizing the metal Surface. Dent. Mater. J. 2014, 33, 111–117. [CrossRef]spa
dcterms.referencesVisai, L.; De Nardo, L.; Punta, C.; Melone, L.; Cigada, A.; Imbriani, M.; Arciola, C.R. Titanium oxide antibacterial surfaces in biomedical devices. Int. J. Artif. Organs 2011, 34, 929–946. [CrossRef]spa
dcterms.referencesAlbrektsson, T.; Johansson, C. Osteoinduction, osteoconduction and osseointegration. Eur. Spine J. 2001, 10, 96–101.spa
dcterms.referencesCsarnovics, I.; Hajdu, P.; Biri, S.; Heged ˝us, C.; Kökényesi, S.; Rácz, R.; Csik, A. Preliminary studies of creation of gold nanoparticles on titanium surface towards biomedical applications. Vacuum 2016, 126, 55–58. [CrossRef]spa
dcterms.referencesHeo, D.N.; Ko, W.K.; Lee, H.R.; Lee, S.J.; Lee, D.; Um, S.H.; Lee, J.H.; Woo, Y.H.; Zhang, L.G.; Lee, D.W.; et al. Titanium dental implants surface-immobilized with gold nanoparticles as osteoinductive agents for rapid osseointegration. J. Colloid Interface Sci. 2016, 469, 129–137. [CrossRef] [PubMed]spa
dcterms.referencesWang, Z.; Zhang, J.; Hu, J.; Yang, G. Gene-activated titanium implants for gene delivery to enhance osseointegration. Biomater. Adv. 2022, 143, 213176. [CrossRef]spa
dcterms.referencesOros-Ruiz, S.; Pedraza-Avella, J.A.; Guzmán, C. Effect of Gold Particle Size and Deposition Method on the Photodegradation of 4-Chlorophenol by Au/TiO2 . Top. Catal. 2011, 54, 519–526. [CrossRef]spa
dcterms.referencesJang, D.; Yu, S.; Chung, K.; Yoo, J.; Marques-Mota, F.; Wang, J.; Ahn, D.J.; Kim, S.; Kim, D.H. Direct deposition of anatase TiO2 on thermally unstable gold nanobipyramid: Morphology-conserved plasmonic nanohybrid for combinational photothermal and photocatalytic cancer therapy. Appl. Mater. Today 2022, 27, 101472. [CrossRef]spa
dcterms.referencesKhung, R.; Sukjai-Suansuwan, N. Effect of gold sputtering on the adhesion of porcelain to cast and machined titanium. J. Prosthet. Dent. 2013, 110, 41–46. [CrossRef]spa
dcterms.referencesShekhawat, D.; Singh, A.; Banerjee, M.K.; Singh, T.; Patnaik, A. Bioceramic composites for orthopaedic applications: A comprehensive review of mechanical, biological, and microstructural properties. Ceram. Int. 2021, 47, 3013–3030. [CrossRef]spa
dcterms.referencesMoghadasi, K.; Syahid, M.; Ashraf, M.; Zulhiqmi, M.; Raja, S.; Wu, B.; Yamani, M.; Ridha, B.M.; Yusof, F.; Fadzil, M.; et al. A review on biomedical implant materials and the effect of friction stir based techniques on their mechanical and tribological properties. J. Mater. Res. Technol. 2022, 17, 1054–1121. [CrossRef]spa
dcterms.referencesYang, J.; Bai, S.; Sun, J.; Wu, H.; Sun, S.; Wang, S.; Xu, D. Microstructural understanding of the oxidation and inter-diffusion behavior of Cr-coated Alloy 800H in supercritical water. Corros. Sci. 2023, 211, 110910. [CrossRef]spa
dcterms.referencesYate, L.; Coy, E.; Gregurec, D.; Aperador, W.; Moya, S.; Wang, G. Nb–C Nanocomposite Films with Enhanced Biocompatibility and Mechanical Properties for Hard-Tissue Implant Applications. ACS Appl. Mater. Interfaces 2015, 7, 6351–6358. [CrossRef]spa
dcterms.referencesOropeza, F.; Egdell, R. Control of valence states in Rh-doped TiO2 by Sb co-doping: A study by high resolution X-ray photoemission spectroscopy. Chem. Phys. Lett. 2011, 515, 249–253. [CrossRef]spa
dcterms.referencesKöbl, J.; Fernández, C.; Augustin, L.; Kataev, E.; Franchi, S.; Tsud, N.; Pistonesi, C.; Pronsato, E.; Jux, N.; Lytken, O.; et al. Benzohydroxamic acid on rutile TiO2 (110)—(1×1)– a comparison of ultrahigh-vacuum evaporation with deposition from solution. Appl. Surf. Sci. 2022, 716, 121955. [CrossRef]spa
dcterms.referencesDumbuya, K.; Cabailh, G.; Lazzari, R.; Jupille, J.; Ringel, L.; Pistor, M.; Lytken, O.; Steinrück, H.-P.; Gottfried, J. Evidence for an active oxygen species on Au/TiO2 (110) model catalysts during investigation with in situ X-ray photoelectron spectroscopy. Catal. Today 2012, 181, 20–25. [CrossRef]spa
dcterms.referencesZheng, L.; Yuan, X. An investigation on the performance of gold layer-based cyanide-free HAuCl4 electroplating process under different power conditions. Mater. Today Commun. 2022, 31, 103711. [CrossRef]spa
dcterms.referencesAlférez, F.; Olaya, J.; Bautista-Ruiz, J. Síntesis y evaluación de resistencia a la corrosión de recubrimientos de SiO2 -TiO2 -ZrO2 -BiO2 sobre acero inoxidable 316L producidos por sol-gel. Bol. Soc. Esp. Ceram. Vidr. 2018, 57, 195–206. [CrossRef]spa
dcterms.referencesBalarabe, B.Y.; Maity, P. Visible light-driven complete photocatalytic oxidation of organic dye by plasmonic Au-TiO2 nanocatalyst under batch and continuous flow condition. Colloids Surf. A Physicochem. Eng. Asp. 2022, 655, 130247. [CrossRef]spa
dcterms.referencesBazaka, O.; Bazaka, K.; Khanh, V.; Levchenko, I.; Jacob, M.; Estrin, Y.; Lapovok, R.; Chichkov, B.; Fadeeva, E.; Kingshott, P.; et al. Effect of titanium surface topography on plasma deposition of antibacterial polymer coatings. Appl. Surf. Sci. 2020, 521, 146375. [CrossRef]spa
dcterms.referencesJun-Li, Y.; Wen, H.; Zhang, Q.; Adachi, Y.; Arima, E.; Kinoshita, Y.; Nomura, H.; Ma, Z.; Kou, L.; Tsukuda, Y.; et al. Stable contrast mode on TiO2 (110) surface with metal-coated tips using AFM. Ultramicroscopy 2018, 191, 51–55.spa
dcterms.referencesDong, P.; Zhang, Y.; Zhu, S.; Nie, Z.; Ma, H.; Liu, Q.; Li, J. First-Principles Study on the Adsorption Characteristics of Corrosive Species on Passive Film TiO2 in a NaCl Solution Containing H2S and CO2 . Metals 2022, 12, 1160. [CrossRef]spa
dcterms.referencesMadhusmita, M.; Arunachalam, N. Effects of electrophoretic deposited graphene coating thickness on the corrosion and wear behaviors of commercially pure titanium. Surf. Coat. Technol. 2022, 450, 128946.spa
dcterms.referencesXu, Z.; Yate, L.; Qiu, Y.; Aperador, W.; Coy, E.; Jiang, B.; Moya, S.; Wang, G.; Pan, H. Potential of niobium-based thin films as a protective and osteogenic coating for dental implants: The role of the nonmetal elements. Mater. Sci. Eng. C 2019, 96, 166–175. [CrossRef] [PubMed]spa
dcterms.referencesSong, B.; Hua, Y.; Zhou, C.; Li, Y.; Yang, L.; Song, Z. Fabrication and anticorrosion behavior of a bi-phase TaNbHfZr/CoCrNi multilayer coating through magnetron sputtering. Corros. Sci. 2022, 196, 110020. [CrossRef]spa
dcterms.referencesMoreno, H.; Caicedo, J.C.; Amaya, C.; Cabrera, G.; Yate, L.; Aperador, W.; Prieto, P. Improvement of the electrochemical behavior of steel surfaces using a TiN[BCN/BN]n/c-BN multilayer system. Diam. Relat. Mater. 2011, 20, 588–595. [CrossRef]spa
dcterms.referencesJiang, C.; Xiong, W.; Cai, W.; Zhu, Y.; Wang, Y. Preload loss of high-strength bolts in friction connections considering corrosion damage and fatigue loading. Eng. Fail. Anal. 2022, 137, 106416. [CrossRef]spa
dcterms.referencesZhang, H.; Kim, T.; Swarts, J.; Yu, Z.; Su, R.; Liu, L.; Howland, W.; Lucadamo, G.; Couet, A. Nano-porosity effects on corrosion rate of Zr alloys using nanoscale microscopy coupled to machine learning. Corros. Sci. 2022, 208, 110660. [CrossRef]spa
dcterms.referencesHu, C.; Xie, X.; Ren, K. A facile method to prepare stearic acid-TiO2/zinc composite coating with multipronged robustness, self-cleaning property, and corrosion resistance. J. Alloys Compd. 2021, 882, 160636. [CrossRef]spa
dcterms.referencesZhang, P.; Liu, J.; Gao, Y.; Liu, Z.; Mai, Q. Effect of heat treatment process on the micro machinability of 7075 aluminum alloy. Vacuum 2023, 207, 111574. [CrossRef]spa
dc.identifier.doihttps:// doi.org/10.3390/lubricants11030091
dc.relation.citationeditionVol.11N° 91.(2023)spa
dc.relation.citationendpage14spa
dc.relation.citationissue91(2023)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume11spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalthin filmseng
dc.subject.proposaltitanium oxideeng
dc.subject.proposalgoldeng
dc.subject.proposalcorrosioneng
dc.subject.proposaltribologyeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).
Except where otherwise noted, this item's license is described as under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).