dc.contributor.author | Aperador Chaparro, William Arnulfo | |
dc.contributor.author | Bautista-Ruiz, Jorge | |
dc.contributor.author | Sanchez Molina, Jorge | |
dc.date.accessioned | 2024-04-01T15:36:35Z | |
dc.date.available | 2024-04-01T15:36:35Z | |
dc.date.issued | 2023-04-21 | |
dc.identifier.uri | https://repositorio.ufps.edu.co/handle/ufps/6774 | |
dc.description.abstract | For industrial processes in which refractory metals are necessary, hafnium carbonitride
exhibits excellent performance due to its high thermal conductivity and resistance to oxidation. In
this study, hafnium carbonitride was deposited on Inconel 718 steel and silicon (100) substrates.
The objective was to characterize the wear properties as a function of temperature. The layers were
deposited by physical vapor deposition (PVD) in an R.F. sputtering magnetron system from carbon
targets and high-purity hafnium (99.99%). The wear tests were carried out at temperatures of 100 ◦C,
200 ◦C, 400 ◦C, and 800 ◦C in non-lubricated conditions. The coefficient of friction (COF) was recorded
in situ. The heat treatment temperature on coatings is essential in determining anti-wear efficiency.
It was determined that high temperatures (800 ◦C) improve resistance to wear. High-resolution
XPS spectra were used to detect the chemical states of Hf 4f5/2 and Hf 4f7/2. The 4f5/2 and 4f7/2
binding energy indicates the presence of HfN and HfC. Using the TEM technique in bright field mode
allowed us to know the orientation, crystallographic structure and interplanar distances of the HfCN.
The topography of the coatings, by AFM, shows uniform grains and very small characteristics that
determine the low surface roughness value. The SEM image of the cross-section of the HfCN coating
shows homogeneity of the layer; no cracks or deformations are observed. | eng |
dc.format.extent | 14 Páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Metals | spa |
dc.relation.ispartof | Aperador, W.; Bautista-Ruiz, J.; Sánchez-Molina, J. Effect of Temperature on the Tribological Properties of Hafnium Carbonitrides Coatings. Metals 2023, 13, 818. https://doi.org/10.3390/ met13040818 | |
dc.rights | This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). | eng |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | spa |
dc.source | https://www.mdpi.com/2075-4701/13/4/818 | spa |
dc.title | Effect of Temperature on the Tribological Properties of Hafnium Carbonitrides Coatings | eng |
dc.type | Artículo de revista | spa |
dcterms.references | González-Hernández, A.; Morales-Cepeda, A.B.; Flores, M.; Caicedo, J.C.; Aperador, W.; Amaya, C. Electrochemical Properties of TiWN/TiWC Multilayer Coatings Deposited by RF-Magnetron Sputtering on AISI 1060. Coatings 2021, 11, 797. [CrossRef] | spa |
dcterms.references | Xiong, X.; Wang, Y.; Li, G.; Chen, Z.; Sun, W.; Wang, Z. HfC/ZrC ablation protective coating for carbon/carbon composites. Corros. Sci. 2013, 77, 25–30. [CrossRef] | spa |
dcterms.references | Glechner, T.; Hudak, O.E.; Wojcik, T.; Haager, L.; Bohrn, F.; Hutter, H.; Hunold, O.; Ramm, J.; Kolozsvári, S.; Pitthan, E.; et al. Influence of the non-metal species on the oxidation kinetics of Hf, HfN, HfC, and HfB2 coatings. Mater. Des. 2021, 211, 110136. [CrossRef] | spa |
dcterms.references | Pujante, J.; Vilaseca, M.; Casellas, D.; Riera, M.D. High temperature scratch testing of hard PVD coatings deposited on surface treated tool steel. Surf. Coat. Technol. 2014, 254, 352–357. [CrossRef] | spa |
dcterms.references | Ushakov, S.V.; Navrotsky, A.; Hong, Q.J.; van de Walle, A. Carbides and Nitrides of Zirconium and Hafnium. Materials 2019, 12, 2728. [CrossRef] | spa |
dcterms.references | Mukasyan, A.S.; Moskovskikh, D.O.; Nepapushev, A.A.; Pauls, J.M.; Roslyakov, S.I. Ceramics from self-sustained reactions: Recent advances. J. Eur. Ceram. Soc. 2020, 40, 2512–2526. [CrossRef] | spa |
dcterms.references | Peng, Z.; Sun, W.; Xiong, X.; Xu, Y.; Zhou, Z.; Zhan, Z.; Zhang, H.; Zeng, Y. Novel nitrogen-doped hafnium carbides for advanced ablation resistance up to 3273 K. Corros. Sci. 2021, 189, 109623. [CrossRef] | spa |
dcterms.references | Buinevich, V.S.; Nepapushev, A.A.; Moskovskikh, D.O.; Kuskov, K.V.; Yudin, S.N.; Mukasyan, A.S. Ultra-high-temperature tantalum-hafnium carbonitride ceramics fabricated by combustion synthesis and spark plasma sintering. Ceram. Int. 2021, 47, 30043–30050. [CrossRef] | spa |
dcterms.references | Suvorova, V.; Nepapushev, A.; Suvorov, D.; Kuskov, K.; Loginov, P.; Moskovskikh, D. Investigation of the Effect of Molybdenum Silicide Addition on the Oxidation Behavior of Hafnium Carbonitride. J. Compos. Sci. 2023, 7, 25. [CrossRef] | spa |
dcterms.references | Buinevich, V.S.; Nepapushev, A.A.; Moskovskikh, D.O.; Trusov, G.V.; Kuskov, K.V.; Mukasyan, A.S. Mechanochemical synthesis and spark plasma sintering of hafnium carbonitride ceramics. Adv. Powder Technol. 2021, 32, 385–389. [CrossRef] | spa |
dcterms.references | Zhang, X.; Li, X.; Zuo, J.; Luo, R.; Wang, J.; Qian, Y.; Li, M.; Xu, J. Characterization of thermophysical and mechanical properties of hafnium carbonitride fabricated by hot pressing sintering. J. Mater. Res. Technol. 2023, 23, 4432–4443. [CrossRef] | spa |
dcterms.references | Drobot, A.; Balaev, E.; Eliseev, V. Technological aspects of increasing the wear resistance of the working surface of the dump with a modified surface. Transp. Res. Proc. 2022, 63, 2921–2926. [CrossRef] | spa |
dcterms.references | Rajendran, R. Gas turbine coatings—An overview. Eng. Fail. Ana. 2012, 26, 355–369. [CrossRef] | spa |
dcterms.references | Gurrappa, I.; Yashwanth, I.V.S. The Importance of Corrosion and the Necessity of Applying Intelligent Coatings for Its Control. In Intelligent Coatings for Corrosion Control; Tiwari, A., Rawlins, J., Hihara, L.H., Eds.; Butterworth-Heinemann: Oxford, UK, 2015; pp. 17–58 | spa |
dcterms.references | P ˛edrak, P.; Góral, M.; Dychton, K.; Drajewicz, M.; Wierzbinska, M.; Kubaszek, T. The Influence of Reactive PS-PVD Process Parameters on the Microstructure and Thermal Properties of Yb2Zr2O7 Thermal Barrier Coating. Materials 2022, 15, 1594. [CrossRef] | spa |
dcterms.references | Xiang, Y.; Yan, K.; Yu, H.; Guo, Y.; Ying, Y.; Li, Z.; Sun, J.; Fang, C. Comparative investigation on the hot corrosion failure of YSZ and GdYb-YSZ double-ceramic-layer thermal barrier coatings under Na2SO4+V2O5 molten salts. Ceram. Int. 2023, 49, 18678–18688. [CrossRef] | spa |
dcterms.references | Piedrahita, W.F.; Aperador, W.; Caicedo, J.C.; Prieto, P. Evolution of physical properties in hafnium carbonitride thin films. J. Alloys Compd. 2017, 690, 485–496. [CrossRef] | spa |
dcterms.references | Li, L.; Shi, L.; Zhang, Y.; Zhang, G.; Zhang, C.; Dong, C.; Yu, H.; Shuang, S. Excitation-independent hollow orange-fluorescent carbon nanoparticles for pH sensing in aqueous solution and living cells. Talanta 2019, 196, 109–116. [CrossRef] | spa |
dcterms.references | Du, S.; Zhang, K.; Meng, Q.; Ren, P.; Hu, C.; Wen, M.; Zheng, W. N dependent tribochemistry: Achieving superhard wear-resistant low-friction TaCxNy films. Surf. Coat. Technol. 2017, 328, 378–389. [CrossRef] | spa |
dcterms.references | Wang, W.; Nabatame, T.; Shimogaki, Y. Preparation of conductive HfN by post rapid thermal annealing-assisted MOCVD and its application to metal gate electrode. Microelectron Eng. 2008, 85, 320–326. [CrossRef] | spa |
dcterms.references | Sergeevich, A.; Jeon, Y.; Kim, S.; Ku, B.; Lim, D.; Han, H.; Chae, M.; Lee, J.; Ha, B.; Choi, C. Influence of oxygen vacancies in ALD HfO2-x thin films on non-volatile resistive switching phenomena with a Ti/HfO2-x/Pt structure. Appl. Surf. Sci. 2018, 434, 822–830. | spa |
dcterms.references | Suvorova, V.S.; Nepapushev, A.A.; Moskovskikh, D.O.; Trusov, G.V.; Kuskov, K.V.; Kolesnikov, E.A. Fabrication and oxidation resistance of the hafnium carbonitride—Silicon carbide composites. Ceram. Int. 2022, 48, 23870–23877. [CrossRef] | spa |
dcterms.references | Savvatimskiy, A.I.; Onufriev, S.V.; Valyano, G.V.; Nepapushev, A.A.; Moskovskikh, D.O. Thermophysical properties of tantalum carbide (TaC) within 2000–5500 K temperature range. Ceram. Int. 2022, 48, 19655–19661. [CrossRef] | spa |
dcterms.references | Yudin, S.N.; Kasimtsev, A.V.; Volodko, S.S.; Alimov, I.A.; Markova, G.V.; Sviridova, T.A.; Yu, N.; Buinevich, V.S.; Nepapushev, A.A.; Moskovskikh, D.O. Low-temperature synthesis of ultra-high-temperature HfC and HfCN nanoparticles. Materialia 2022, 22, 101415. [CrossRef] | spa |
dcterms.references | Farhan, M.; Fayyaz, O.; Nawaz, M.; Bahgat, A.; Shakoor, R.A. Synthesis and properties of electroless Ni–P-HfC nanocomposite coatings. Mater. Chem. Phys. 2022, 291, 126696. [CrossRef] | spa |
dcterms.references | Gao, J.; Hei, H.; Zheng, K.; Wang, R.; Shen, Y.; Liu, X.; Tang, B.; He, Z.; Yu, S. Design and synthesis of diffusion-modified HfC/HfCSiC bilayer system onto WC-Co substrate for adherent diamond deposition. J. Alloys Compd. 2017, 705, 376–383. [CrossRef] | spa |
dcterms.references | Feng, G.; Yu, Y.; Yao, X.; Wu, X.; Zhang, H.; Jia, Y.; Li, H. Nanosized Hf6Ta2O17 particles reinforced HfC ceramic coating for high temperature applications. J. Eur. Ceram. Soc. 2023, 43, 3043–3052. [CrossRef] | spa |
dcterms.references | Zhang, J.; Zhang, Y.; Fu, Y.; Zhang, Y.; Zhu, X. Growth mechanism and ablation behavior of CVD-HfC coating on the surface of C/C composites and CVD-SiC coating. Corros Sci 2021, 192, 109819. [CrossRef] | spa |
dcterms.references | Staia, M.H.; Bhat, D.G.; Puchi-Cabrera, E.S.; Bost, J. Characterization of chemical vapor deposited HfN multilayer coatings on cemented carbide cutting tools. Wear 2006, 261, 540–548. [CrossRef] | spa |
dcterms.references | Bhowmick, S.; Shirzadian, S.; Alpas, A.T. High-temperature tribological behavior of Ti containing diamond-like carbon coatings with emphasis on running-in coefficient of friction. Surf. Coat. Technol. 2022, 431, 127995. [CrossRef] | spa |
dcterms.references | Jia, R.N.; Tu, T.Q.; Zheng, K.H.; Jiao, Z.B.; Luo, Z.C. Abrasive wear behavior of TiC-strengthened eutectic high chromium cast iron composites. Mater. Today Commun. 2021, 29, 102906. [CrossRef] | spa |
dcterms.references | Hu, H.; Guo, Y.; Yan, J.; Qiu, J.; Wang, Y. Dry sliding Wear Behavior of MoSi2 -Mo5Si3 -Mo5SiB2 Composite at Different Temperatures and loads. Wear 2019, 428, 237–245. [CrossRef] | spa |
dcterms.references | Yan, J.; He, Z.; Wang, Y.; Qiu, J.; Wang, Y. Microstructure and Wear Resistance of Plasma-Sprayed Molybdenum Coating Reinforced by MoSi2 Particles. J. Therm. Spray Technol. 2016, 25, 1322–1329. [CrossRef] | spa |
dc.identifier.doi | https://doi.org/10.3390/ met13040818 | |
dc.relation.citationedition | 13.(2023) | spa |
dc.relation.citationendpage | 14 | spa |
dc.relation.citationissue | 13 (2023) | spa |
dc.relation.citationstartpage | 1 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.subject.proposal | hafnium carbonitride | eng |
dc.subject.proposal | wear | eng |
dc.subject.proposal | coating | eng |
dc.subject.proposal | high temperatures | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |