Show simple item record

dc.contributor.authorAperador Chaparro, William Arnulfo
dc.contributor.authorBautista-Ruiz, Jorge
dc.contributor.authorSanchez Molina, Jorge
dc.date.accessioned2024-04-01T15:36:35Z
dc.date.available2024-04-01T15:36:35Z
dc.date.issued2023-04-21
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/6774
dc.description.abstractFor industrial processes in which refractory metals are necessary, hafnium carbonitride exhibits excellent performance due to its high thermal conductivity and resistance to oxidation. In this study, hafnium carbonitride was deposited on Inconel 718 steel and silicon (100) substrates. The objective was to characterize the wear properties as a function of temperature. The layers were deposited by physical vapor deposition (PVD) in an R.F. sputtering magnetron system from carbon targets and high-purity hafnium (99.99%). The wear tests were carried out at temperatures of 100 ◦C, 200 ◦C, 400 ◦C, and 800 ◦C in non-lubricated conditions. The coefficient of friction (COF) was recorded in situ. The heat treatment temperature on coatings is essential in determining anti-wear efficiency. It was determined that high temperatures (800 ◦C) improve resistance to wear. High-resolution XPS spectra were used to detect the chemical states of Hf 4f5/2 and Hf 4f7/2. The 4f5/2 and 4f7/2 binding energy indicates the presence of HfN and HfC. Using the TEM technique in bright field mode allowed us to know the orientation, crystallographic structure and interplanar distances of the HfCN. The topography of the coatings, by AFM, shows uniform grains and very small characteristics that determine the low surface roughness value. The SEM image of the cross-section of the HfCN coating shows homogeneity of the layer; no cracks or deformations are observed.eng
dc.format.extent14 Páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherMetalsspa
dc.relation.ispartofAperador, W.; Bautista-Ruiz, J.; Sánchez-Molina, J. Effect of Temperature on the Tribological Properties of Hafnium Carbonitrides Coatings. Metals 2023, 13, 818. https://doi.org/10.3390/ met13040818
dc.rightsThis article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).eng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://www.mdpi.com/2075-4701/13/4/818spa
dc.titleEffect of Temperature on the Tribological Properties of Hafnium Carbonitrides Coatingseng
dc.typeArtículo de revistaspa
dcterms.referencesGonzález-Hernández, A.; Morales-Cepeda, A.B.; Flores, M.; Caicedo, J.C.; Aperador, W.; Amaya, C. Electrochemical Properties of TiWN/TiWC Multilayer Coatings Deposited by RF-Magnetron Sputtering on AISI 1060. Coatings 2021, 11, 797. [CrossRef]spa
dcterms.referencesXiong, X.; Wang, Y.; Li, G.; Chen, Z.; Sun, W.; Wang, Z. HfC/ZrC ablation protective coating for carbon/carbon composites. Corros. Sci. 2013, 77, 25–30. [CrossRef]spa
dcterms.referencesGlechner, T.; Hudak, O.E.; Wojcik, T.; Haager, L.; Bohrn, F.; Hutter, H.; Hunold, O.; Ramm, J.; Kolozsvári, S.; Pitthan, E.; et al. Influence of the non-metal species on the oxidation kinetics of Hf, HfN, HfC, and HfB2 coatings. Mater. Des. 2021, 211, 110136. [CrossRef]spa
dcterms.referencesPujante, J.; Vilaseca, M.; Casellas, D.; Riera, M.D. High temperature scratch testing of hard PVD coatings deposited on surface treated tool steel. Surf. Coat. Technol. 2014, 254, 352–357. [CrossRef]spa
dcterms.referencesUshakov, S.V.; Navrotsky, A.; Hong, Q.J.; van de Walle, A. Carbides and Nitrides of Zirconium and Hafnium. Materials 2019, 12, 2728. [CrossRef]spa
dcterms.referencesMukasyan, A.S.; Moskovskikh, D.O.; Nepapushev, A.A.; Pauls, J.M.; Roslyakov, S.I. Ceramics from self-sustained reactions: Recent advances. J. Eur. Ceram. Soc. 2020, 40, 2512–2526. [CrossRef]spa
dcterms.referencesPeng, Z.; Sun, W.; Xiong, X.; Xu, Y.; Zhou, Z.; Zhan, Z.; Zhang, H.; Zeng, Y. Novel nitrogen-doped hafnium carbides for advanced ablation resistance up to 3273 K. Corros. Sci. 2021, 189, 109623. [CrossRef]spa
dcterms.referencesBuinevich, V.S.; Nepapushev, A.A.; Moskovskikh, D.O.; Kuskov, K.V.; Yudin, S.N.; Mukasyan, A.S. Ultra-high-temperature tantalum-hafnium carbonitride ceramics fabricated by combustion synthesis and spark plasma sintering. Ceram. Int. 2021, 47, 30043–30050. [CrossRef]spa
dcterms.referencesSuvorova, V.; Nepapushev, A.; Suvorov, D.; Kuskov, K.; Loginov, P.; Moskovskikh, D. Investigation of the Effect of Molybdenum Silicide Addition on the Oxidation Behavior of Hafnium Carbonitride. J. Compos. Sci. 2023, 7, 25. [CrossRef]spa
dcterms.referencesBuinevich, V.S.; Nepapushev, A.A.; Moskovskikh, D.O.; Trusov, G.V.; Kuskov, K.V.; Mukasyan, A.S. Mechanochemical synthesis and spark plasma sintering of hafnium carbonitride ceramics. Adv. Powder Technol. 2021, 32, 385–389. [CrossRef]spa
dcterms.referencesZhang, X.; Li, X.; Zuo, J.; Luo, R.; Wang, J.; Qian, Y.; Li, M.; Xu, J. Characterization of thermophysical and mechanical properties of hafnium carbonitride fabricated by hot pressing sintering. J. Mater. Res. Technol. 2023, 23, 4432–4443. [CrossRef]spa
dcterms.referencesDrobot, A.; Balaev, E.; Eliseev, V. Technological aspects of increasing the wear resistance of the working surface of the dump with a modified surface. Transp. Res. Proc. 2022, 63, 2921–2926. [CrossRef]spa
dcterms.referencesRajendran, R. Gas turbine coatings—An overview. Eng. Fail. Ana. 2012, 26, 355–369. [CrossRef]spa
dcterms.referencesGurrappa, I.; Yashwanth, I.V.S. The Importance of Corrosion and the Necessity of Applying Intelligent Coatings for Its Control. In Intelligent Coatings for Corrosion Control; Tiwari, A., Rawlins, J., Hihara, L.H., Eds.; Butterworth-Heinemann: Oxford, UK, 2015; pp. 17–58spa
dcterms.referencesP ˛edrak, P.; Góral, M.; Dychton, K.; Drajewicz, M.; Wierzbinska, M.; Kubaszek, T. The Influence of Reactive PS-PVD Process Parameters on the Microstructure and Thermal Properties of Yb2Zr2O7 Thermal Barrier Coating. Materials 2022, 15, 1594. [CrossRef]spa
dcterms.referencesXiang, Y.; Yan, K.; Yu, H.; Guo, Y.; Ying, Y.; Li, Z.; Sun, J.; Fang, C. Comparative investigation on the hot corrosion failure of YSZ and GdYb-YSZ double-ceramic-layer thermal barrier coatings under Na2SO4+V2O5 molten salts. Ceram. Int. 2023, 49, 18678–18688. [CrossRef]spa
dcterms.referencesPiedrahita, W.F.; Aperador, W.; Caicedo, J.C.; Prieto, P. Evolution of physical properties in hafnium carbonitride thin films. J. Alloys Compd. 2017, 690, 485–496. [CrossRef]spa
dcterms.referencesLi, L.; Shi, L.; Zhang, Y.; Zhang, G.; Zhang, C.; Dong, C.; Yu, H.; Shuang, S. Excitation-independent hollow orange-fluorescent carbon nanoparticles for pH sensing in aqueous solution and living cells. Talanta 2019, 196, 109–116. [CrossRef]spa
dcterms.referencesDu, S.; Zhang, K.; Meng, Q.; Ren, P.; Hu, C.; Wen, M.; Zheng, W. N dependent tribochemistry: Achieving superhard wear-resistant low-friction TaCxNy films. Surf. Coat. Technol. 2017, 328, 378–389. [CrossRef]spa
dcterms.referencesWang, W.; Nabatame, T.; Shimogaki, Y. Preparation of conductive HfN by post rapid thermal annealing-assisted MOCVD and its application to metal gate electrode. Microelectron Eng. 2008, 85, 320–326. [CrossRef]spa
dcterms.referencesSergeevich, A.; Jeon, Y.; Kim, S.; Ku, B.; Lim, D.; Han, H.; Chae, M.; Lee, J.; Ha, B.; Choi, C. Influence of oxygen vacancies in ALD HfO2-x thin films on non-volatile resistive switching phenomena with a Ti/HfO2-x/Pt structure. Appl. Surf. Sci. 2018, 434, 822–830.spa
dcterms.referencesSuvorova, V.S.; Nepapushev, A.A.; Moskovskikh, D.O.; Trusov, G.V.; Kuskov, K.V.; Kolesnikov, E.A. Fabrication and oxidation resistance of the hafnium carbonitride—Silicon carbide composites. Ceram. Int. 2022, 48, 23870–23877. [CrossRef]spa
dcterms.referencesSavvatimskiy, A.I.; Onufriev, S.V.; Valyano, G.V.; Nepapushev, A.A.; Moskovskikh, D.O. Thermophysical properties of tantalum carbide (TaC) within 2000–5500 K temperature range. Ceram. Int. 2022, 48, 19655–19661. [CrossRef]spa
dcterms.referencesYudin, S.N.; Kasimtsev, A.V.; Volodko, S.S.; Alimov, I.A.; Markova, G.V.; Sviridova, T.A.; Yu, N.; Buinevich, V.S.; Nepapushev, A.A.; Moskovskikh, D.O. Low-temperature synthesis of ultra-high-temperature HfC and HfCN nanoparticles. Materialia 2022, 22, 101415. [CrossRef]spa
dcterms.referencesFarhan, M.; Fayyaz, O.; Nawaz, M.; Bahgat, A.; Shakoor, R.A. Synthesis and properties of electroless Ni–P-HfC nanocomposite coatings. Mater. Chem. Phys. 2022, 291, 126696. [CrossRef]spa
dcterms.referencesGao, J.; Hei, H.; Zheng, K.; Wang, R.; Shen, Y.; Liu, X.; Tang, B.; He, Z.; Yu, S. Design and synthesis of diffusion-modified HfC/HfCSiC bilayer system onto WC-Co substrate for adherent diamond deposition. J. Alloys Compd. 2017, 705, 376–383. [CrossRef]spa
dcterms.referencesFeng, G.; Yu, Y.; Yao, X.; Wu, X.; Zhang, H.; Jia, Y.; Li, H. Nanosized Hf6Ta2O17 particles reinforced HfC ceramic coating for high temperature applications. J. Eur. Ceram. Soc. 2023, 43, 3043–3052. [CrossRef]spa
dcterms.referencesZhang, J.; Zhang, Y.; Fu, Y.; Zhang, Y.; Zhu, X. Growth mechanism and ablation behavior of CVD-HfC coating on the surface of C/C composites and CVD-SiC coating. Corros Sci 2021, 192, 109819. [CrossRef]spa
dcterms.referencesStaia, M.H.; Bhat, D.G.; Puchi-Cabrera, E.S.; Bost, J. Characterization of chemical vapor deposited HfN multilayer coatings on cemented carbide cutting tools. Wear 2006, 261, 540–548. [CrossRef]spa
dcterms.referencesBhowmick, S.; Shirzadian, S.; Alpas, A.T. High-temperature tribological behavior of Ti containing diamond-like carbon coatings with emphasis on running-in coefficient of friction. Surf. Coat. Technol. 2022, 431, 127995. [CrossRef]spa
dcterms.referencesJia, R.N.; Tu, T.Q.; Zheng, K.H.; Jiao, Z.B.; Luo, Z.C. Abrasive wear behavior of TiC-strengthened eutectic high chromium cast iron composites. Mater. Today Commun. 2021, 29, 102906. [CrossRef]spa
dcterms.referencesHu, H.; Guo, Y.; Yan, J.; Qiu, J.; Wang, Y. Dry sliding Wear Behavior of MoSi2 -Mo5Si3 -Mo5SiB2 Composite at Different Temperatures and loads. Wear 2019, 428, 237–245. [CrossRef]spa
dcterms.referencesYan, J.; He, Z.; Wang, Y.; Qiu, J.; Wang, Y. Microstructure and Wear Resistance of Plasma-Sprayed Molybdenum Coating Reinforced by MoSi2 Particles. J. Therm. Spray Technol. 2016, 25, 1322–1329. [CrossRef]spa
dc.identifier.doihttps://doi.org/10.3390/ met13040818
dc.relation.citationedition13.(2023)spa
dc.relation.citationendpage14spa
dc.relation.citationissue13 (2023)spa
dc.relation.citationstartpage1spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalhafnium carbonitrideeng
dc.subject.proposalweareng
dc.subject.proposalcoatingeng
dc.subject.proposalhigh temperatureseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).
Except where otherwise noted, this item's license is described as This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).