Mostrar el registro sencillo del ítem

dc.contributor.authorCarrillo, Maria Fernanda
dc.contributor.authorMora Estupiñan, Daniela Alejandra
dc.contributor.authorOrtiz, Luz
dc.contributor.authorChaves-Bedoya, Giovanni
dc.date.accessioned2024-03-22T17:02:21Z
dc.date.available2024-03-22T17:02:21Z
dc.date.issued2023-05-01
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/6768
dc.description.abstractAnthracnose, caused by the pathogenic fungi Colletotrichum spp., poses a significant threat to table tomato (Lycopersicum esculentum) cultivation. This study delves into the potential of plant extracts from Cnidoscolus urens L. as an alternative biocontrol strategy to combat this disease. Rich in secondary metabolites like terpenes, which are instrumental in plant defense, these extracts also comprise esters and fatty acids. Although the latter are not classified as secondary metabolites, they contribute significantly to the plant's biochemical makeup. Our objective was to gauge the in vitro inhibitory efficacy of ethanolic extracts derived from the leaves and stems of Cnidoscolus urens L. against Colletotrichum spp. To achieve this, an agar dilution method with varying extract concentrations was employed. The results showed that concentrations ranging from treatment 3 to treatment 8 effectively inhibited fungal mycelial growth. Interestingly, the extracts' origin, whether from leaves or stems, did not show any significant differential impact on their inhibitory activity. These insights emphasize the consistent effect of Cnidoscolus urens L. extracts in stalling Colletotrichum spp. growth, underscoring their potential as biological antifungal agents in agriculture. Given the pronounced in vitro effectiveness of both leaf and stem extracts, they beckon further exploration as part of sustainable agricultural strategies to combat prominent diseases like anthracnose.eng
dc.format.extent11 Páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherRevista Colombiana de Ciencias Horticolasspa
dc.relation.ispartofM. F. Carrillo, D. A. Mora-Estupiñan, L. Y. Ortiz-Rojas, and G. Chaves-Bedoya, “In Vitro antifungal activity of ethanol extracts from Cnidoscolus urens L. in controlling Colletotrichum spp. in Lycopersicum esculentum: a sustainable agricultural perspective”, Rev. Colomb. Cienc. Hortic, vol. 17, no. 2, p. e16283, May 2023.
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.eng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourcehttps://revistas.uptc.edu.co/index.php/ciencias_horticolas/article/view/16283spa
dc.titleIn Vitro antifungal activity of ethanol extracts from Cnidoscolus urens L. in controlling Colletotrichum spp. in Lycopersicum esculentum: a sustainable agricultural perspectiveeng
dc.typeArtículo de revistaspa
dcterms.referencesAlarcon, J., D.C. Recharte, F. Yanqui, S.M. Moreno, and M.A. Buendía. 2020. Fertilizar con microorganismos eficientes autóctonos tiene efecto positivo en la fenología, biomasa y producción de tomate (Lycopersicum esculentum Mill). Sci. Agropecu. 11(1), 67-73. Doi: https://doi.org/10.17268/sci.agropecu.2020.01.08spa
dcterms.referencesÁlvarez, E., C.A. Ospina, J.F. Mejía de los Ríos, and G.A. Llano. 2004. Caracterización morfológica, patogénica y genética del agente causal de la antracnosis (Colletotrichum gloeosporioides) en guanábana (Annona muricata) en el Valle del Cauca. Fitopatol. Colomb. 28(1), 1-8. Doi: https://cgspace.cgiar.org/handle/10568/44257spa
dcterms.referencesBarnett, H.L., and Hunter, B. B. 1986. Illustrated genera of imperfect fungi. 4th ed. Macmillan Publishing Co., New York, NY.spa
dcterms.referencesBenson, D.A., I, Karsch., D.J. Lipman, J. Ostell, and D.L. Wheeler. 2005. GenBank. NAR. 1(33), 34-38. Doi: https://doi.org/10.1093/nar/gki063spa
dcterms.referencesCarvalho Neto, M.F., R.C.R.G. Gervásio, E.C.C. Araújo, J.C. Almeida, and A.P. Oliveira. 2018. Bioactivity of the organic extracts of Cnidoscolus urens (L.) Arthur (Euphorbiaceae) on the cabbage-caterpillar. Comun. Sci. 9(3), 402-411. Doi: https://doi.org/10.14295/cs.v8i1.2556spa
dcterms.referencesChaves-Bedoya, G. 2022. Study on Croton sp. genetic diversity in the department of Norte de Santander using the internal transcribed spacer (ITS) region of ribosomal DNA (rDNA). Rev. Colomb. Cienc. Hortic. 16(1), e13592. Doi: https://doi.org/10.17584/rcch.2022v16i1.13592spa
dcterms.referencesChaves-Bedoya, G. and L. Ortiz-Rojas. 2022. Estudio fitoquímico de Cnidoscolus urens (L.) Arthur procedente de la región de Cúcuta (Colombia). Inf. Tecnol. 33(6), 21-30. Doi: https://doi.org/10.4067/S0718-07642022000600021spa
dcterms.referencesCiofini, A., F. Negrini, R. Baroncelli, and E. Baraldi. 2022. Management of post-harvest anthracnose: current approaches and future perspectives. Plants 11(14), 1856, Doi: https://doi.org/10.3390/plants11141856spa
dcterms.referencesEl Khetabi, A., R. Lahlali, S. Ezrari, N. Radouane, N. Lyousfi, H. Banani, L. Askarne, A. Tahiri, L. El Ghadraoui, S. Belmalha, and E.A. Barka. 2022. Role of plant extracts and essential oils in fighting against postharvest fruit pathogens and extending fruit shelf life: a review. Trends Food Sci. Tech. 120, 402-417. Doi: https://doi.org/10.1016/j.tifs.2022.01.009spa
dcterms.referencesElhamouly, N.A., O.A. Hewedy, A. Zaitoon, A. Miraples, O.T. Elshorbagy, S. Hussien, A. El-Tahan, and D. Peng. 2022. The hidden power of secondary metabolites in plant-fungi interactions and sustainable phytoremediation. Front. Plant Sci. 13, 1044896. Doi: https://doi.org/10.3389/fpls.2022.1044896spa
dcterms.referencesFigueiredo Junior, E.C., Y.W. Cavalcanti, A.B. Lira, H.L.F. Pessoa, W.S. Lopes, D.R. Silva, I.A. Freires, P.L. Rosalen, E.M.M.B. Costa, and J.V. Pereira. 2021. Phytochemical composition, antifungal activity, in vitro and in vivo toxicity of Syzygium cumini (L.) skeels leaves extract. Bol. Latinoam. Caribe Plantas Med. Aromat. 20(5), 536-557. Doi: https://doi.org/10.37360/blacpma.21.20.5.40spa
dcterms.referencesKong, W.L., L. Rui, H. Ni, and X.Q. Wu. 2020. Antifungal effects of volatile organic compounds produced by Rahnella aquatilis JZ-GX1 against Colletotrichum gloeosporioides in Liriodendron chinense × tulipifera. Front. Microbiol. 11, 1114. Doi: https://doi.org/10.3389/fmicb.2020.01114spa
dcterms.referencesMartínez-Culebras, P.V. 1999. Caracterización y diagnóstico molecular de las cepas de Colletotrichum patógenas de plantas de fresa. PhD thesis. Universidad de Valencia, Valencia, Spain.spa
dcterms.referencesPanno, S., S. Davino, A.G. Caruso, S. Bertacca, A. Crnogorac, A. Mandić, E. Noris, and S. Matić. 2021. A review of the most common and economically important diseases that undermine the cultivation of tomato crop in the Mediterranean basin. Agronomy 11(11), 2188. Doi: https://doi.org/10.3390/agronomy11112188spa
dcterms.referencesPercival, G.C. and S. Graham. 2021. Evaluation of inducing agents and synthetic fungicide combinations for management of foliar pathogens of urban trees. Arboric. Urban For. 47(2), 85-95. Doi: https://doi.org/10.48044/jauf.2021.008spa
dcterms.referencesQuiroz-Lobo, Y., G. Santafé-Patiño, and J.-A. Quirós-Rodríguez. 2022. Bioactividad e identificación de los ácidos grasos de la esponja marina Tetilla rodriguesi (Tetractinellida: Tetillidae) en el Caribe colombiano. Rev. Biol. Trop. 70(1), 20-29.spa
dcterms.referencesSepúlveda-Flórez, D.R. 2016. Sistemas de producción de tomate en el municipio de Cáchira, Norte de Santander: en busca de elementos para el análisis de su sostenibilidad. Undergraduate thesis. Pontificia Universidad Javeriana, Bogota.spa
dcterms.referencesShahriar, S.A., A. Husna, T.T. Paul, M.N.K. Eaty, M. Quamruzzaman, A.B. Siddique, M.A. Rahim, A.N.F. Ahmmed, J. Uddain, and S. Siddiquee. 2023. Colletotrichum truncatum causing anthracnose of tomato (Solanum lycopersicum L.) in Malaysia. Microorganisms 11(1), 226. Doi: https://doi.org/10.3390/microorganisms11010226spa
dcterms.referencesVaou, N., E. Stavropoulou, C. Voidarou, Z. Tsakris, G. Rozos, C. Tsigalou, and E. Bezirtzoglou. 2022. Interactions between medical plant-derived bioactive compounds: focus on antimicrobial combination effects. Antibiotics 11(8), 1014. Doi: https://doi.org/10.3390/antibiotics11081014spa
dcterms.referencesWaheed, K., H. Nawaz, M.A. Hanif, and R. Rehman. 2020. Tomato. pp. 631-644. In: Hanif, M.A., H. Nawaz, M.M. Khan, and H.J. Byrne (eds.). Medicinal plants of South Asia: novel sources for drug discovery. Elsevier, Doi: https://doi.org/10.1016/B978-0-08-102659-5.00046-Xspa
dcterms.referencesYuan, H., Q. Ma, L. Ye, and G. Piao. 2016. The traditional medicine and modern medicine from natural products. Molecules 21(5), 559. Doi: https://doi.org/10.3390/molecules21050559spa
dc.identifier.doihttps://doi.org/10.17584/rcch.2023v17i2.16283
dc.relation.citationeditionVol.17 N°.2 (2023)spa
dc.relation.citationendpage11spa
dc.relation.citationissue2 (2023)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume17spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.subject.proposalAgar dilution methodeng
dc.subject.proposalSecondary metaboliteseng
dc.subject.proposalIn Vitro inhibitioneng
dc.subject.proposalAnthracnose biocontroleng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Excepto si se señala otra cosa, la licencia del ítem se describe como This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.