Show simple item record

dc.contributor.authorVergel Suarez, Ariadna Hazel
dc.contributor.authorGarcía-Martinez, Janet
dc.contributor.authorLópez Barrera, German Luciano
dc.contributor.authorBarajas Solano, andres F
dc.contributor.authorZUORRO, Antonio
dc.date.accessioned2024-03-22T16:20:22Z
dc.date.available2024-03-22T16:20:22Z
dc.date.issued2023-04-23
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/6766
dc.description.abstractDrying the biomass produced is one of the critical steps to avoid cell degradation; however, its high energy cost is a significant technological barrier to improving this type of bioprocess’s technical and economic feasibility. This work explores the impact of the biomass drying method of a strain of Potamosiphon sp. on the extraction efficiency of a phycoerythrin-rich protein extract. To achieve the above, the effect of time (12–24 h), temperature (40–70 ◦C), and drying method (convection oven and dehydrator) were determined using an I-best design with a response surface. According to the statistical results, the factors that most influence the extraction and purity of phycoerythrin are temperature and moisture removal by dehydration. The latter demonstrates that gentle drying of the biomass allows removing the most significant amount of moisture from the biomass without affecting the concentration or quality of temperature-sensitive proteins.eng
dc.format.extent13 Páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherBioTechspa
dc.relation.ispartofVergel-Suarez, A.H.; García-Martínez, J.B.; López-Barrera, G.L.; Barajas-Solano, A.F.; Zuorro, A. Impact of Biomass Drying Process on the Extraction Efficiency of C-Phycoerythrin. BioTech 2023, 12, 30. https://doi.org/10.3390/ biotech12020030
dc.rights© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).eng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://www.mdpi.com/2673-6284/12/2/30spa
dc.titleImpact of Biomass Drying Process on the Extraction Efficiency of C-Phycoerythrineng
dc.typeArtículo de revistaspa
dcterms.referencesCarmona, R.; Murillo, M.C.; Lafarga, T.; Bermejo, R. Assessment of the Potential of Microalgae-Derived Phycoerythrin as a Natural Colorant in Beverages. J. Appl. Phycol. 2022, 34, 3025–3034. [CrossRef]spa
dcterms.referencesHamouda, R.A.; El-Naggar, N.E.-A. Chapter 14—Cyanobacteria-Based Microbial Cell Factories for Production of Industrial Products. In Microbial Cell Factories Engineering for Production of Biomolecules; Singh, V., Ed.; Academic Press: New York, NY, USA, 2021; pp. 277–302. [CrossRef]spa
dcterms.referencesBarajas-Solano, A.F. Optimization of Phycobiliprotein Solubilization from a Thermotolerant Oscillatoria sp. Processes 2022, 10, 836. [CrossRef]spa
dcterms.referencesMehariya, S.; Fratini, F.; Lavecchia, R.; Zuorro, A. Green Extraction of Value-Added Compounds Form Microalgae: A Short Review on Natural Deep Eutectic Solvents (NaDES) and Related Pre-Treatments. J. Environ. Chem. Eng. 2021, 9, 105989. [CrossRef]spa
dcterms.referencesChittapun, S.; Jonjaroen, V.; Khumrangsee, K.; Charoenrat, T. C-Phycocyanin Extraction from Two Freshwater Cyanobacteria by Freeze-Thaw and Pulsed Electric Field Techniques to Improve Extraction Efficiency and Purity. Algal Res. 2020, 46, 101789. [CrossRef]spa
dcterms.referencesSommer, M.C.; Balazinski, M.; Rataj, R.; Wenske, S.; Kolb, J.F.; Zocher, K. Assessment of Phycocyanin Extraction from Cyanidium caldarium by Spark Discharges, Compared to Freeze-thaw Cycles, Sonication and Pulsed Electric Fields. Microorganisms 2021, 9, 1452. [CrossRef] [PubMed]spa
dcterms.referencesJi, L.; Liu, Y.; Luo, J.; Fan, J. Freeze-Thaw-Assisted Aqueous Two-Phase System as a Green and Low-Cost Option for Analytical Grade B-Phycoerythrin Production from Unicellular Microalgae Porphyridium purpureum. Algal Res. 2022, 67, 102831. [CrossRef]spa
dcterms.referencesArdiles, P.; Cerezal-Mezquita, P.; Salinas-Fuentes, F.; Órdenes, D.; Renato, G.; Ruiz-Domínguez, M.C. Biochemical Composition and Phycoerythrin Extraction from Red Microalgae: A Comparative Study Using Green Extraction Technologies. Processes 2020, 8, 1628. [CrossRef]spa
dcterms.referencesZuorro, A.; Malavasi, V.; Cao, G.; Lavecchia, R. Use of Cell Wall Degrading Enzymes to Improve the Recovery of Lipids from Chlorella sorokiniana. Chem. Eng. J. 2019, 377, 120325. [CrossRef]spa
dcterms.referencesLee, C.-W.; Bae, G.Y.; Bae, S.-H.; Suh, H.J.; Jo, K. Increased Thermal Stability of Phycocyanin Extracted from Spirulina platensis by Cysteine Addition during Enzyme Extraction. Food Sci. Technol. 2022, 42, e15021. [CrossRef]spa
dcterms.referencesSeghiri, R.; Legrand, J.; Hsissou, R.; Essamri, A. Comparative Study of the Impact of Conventional and Unconventional Drying Processes on Phycobiliproteins from Arthrospira platensis. Algal Res. 2021, 53, 102165. [CrossRef]spa
dcterms.referencesRezvani, Z.; Mortezapour, H.; Ameri, M.; Akhavan, H.-R.; Arslan, S. Drying of Spirulina with a Continuous Infrared-Assisted Refractance WindowTM Dryer Equipped with a Photovoltaic-Thermal Solar Collector. Heat Mass Transfer. 2022, 58, 1739–1755. [CrossRef]spa
dcterms.referencesSilva, J.P.S.; Veloso, C.R.R.; de Souza Barrozo, M.A.; Vieira, L.G.M. Indirect Solar Drying of Spirulina platensis and the Effect of Operating Conditions on Product Quality. Algal Res. 2021, 60, 102521. [CrossRef]spa
dcterms.referencesDemarco, M.; de Moraes, J.O.; Ferrari, M.C.; Neves, F.d.F.; Laurindo, J.B.; Tribuzi, G. Production of Spirulina (Arthrospira platensis) Powder by Innovative and Traditional Drying Techniques. J. Food Process. Eng. 2022, 45, e13919. [CrossRef]spa
dcterms.referencesStramarkou, M.; Papadaki, S.; Kyriakopoulou, K.; Tzovenis, I.; Chronis, M.; Krokida, M. Comparative Analysis of Different Drying Techniques Based on the Qualitative Characteristics of Spirulina platensis Biomass. J. Aquat. Food Prod. Technol. 2021, 30, 498–516. [CrossRef]spa
dcterms.referencesAyekpam, C.; Hamsavi, G.K.; Raghavarao, K.S.M.S. Efficient Extraction of Food Grade Natural Blue Colorant from Dry Biomass of Spirulina Platensis Using Eco-Friendly Methods. Food Bioprod. Process. 2021, 129, 84–93. [CrossRef]spa
dcterms.referencesLi, C.; Wu, H.; Xiang, W.; Wu, H.; Wang, N.; Wu, J.; Li, T. Comparison of Production and Fluorescence Characteristics of Phycoerythrin from Three Strains of Porphyridium. Foods 2022, 11, 2069. [CrossRef]spa
dcterms.referencesHuschek, G.; Rawel, H.M.; Schweikert, T.; Henkel-Oberländer, J.; Sagu, S.T. Characterization and Optimization of MicrowaveAssisted Extraction of B-Phycoerythrin from Porphyridium purpureum Using Response Surface Methodology and Doehlert Design. Bioresour. Technol. Rep. 2022, 19, 101212. [CrossRef]spa
dcterms.referencesZhang, A.H.; Feng, B.; Zhang, H.; Jiang, J.; Zhang, D.; Du, Y.; Cheng, Z.; Huang, J. Efficient Cultivation of Porphyridium purpureum Integrated with Swine Wastewater Treatment to Produce Phycoerythrin and Polysaccharide. J. Appl. Phycol. 2022, 34, 2315–2326. [CrossRef]spa
dcterms.referencesYin, H.-C.; Sui, J.-K.; Han, T.-L.; Liu, T.-Z.; Wang, H. Integration Bioprocess of B-Phycoerythrin and Exopolysaccharides Production from Photosynthetic Microalga Porphyridium cruentum. Front. Mar. Sci. 2022, 8, 836370. [CrossRef]spa
dcterms.referencesGuiza-Franco, L.; Orozco-Rojas, L.G.; Sanchez-Galvis, M.; Garcia-Martinez, J.B.; Barajas-Ferreira, C.; Zuorro, A.; Barajas-Solano, A.F. Production of Chlorella vulgaris Biomass on UV-Treated Wastewater as an Alternative for Environmental Sustainability on High-Mountain Fisheries. Chem. Eng. Trans. 2018, 64, 517–522. [CrossRef]spa
dcterms.referencesZuorro, A.; García-Martínez, J.B.; Barajas-Solano, A.F. The Application of Catalytic Processes on the Production of Algae-Based Biofuels: A Review. Catalysts 2021, 11, 22. [CrossRef]spa
dcterms.referencesZuorro, A.; Leal-Jerez, A.G.; Morales-Rivas, L.K.; Mogollón-Londoño, S.O.; Sanchez-Galvis, E.M.; García-Martínez, J.B.; BarajasSolano, A.F. Enhancement of Phycobiliprotein Accumulation in Thermotolerant Oscillatoria sp. through Media Optimization. ACS Omega 2021, 6, 10527–10536. [CrossRef]spa
dcterms.referencesBennett, A.; Bogorad, L. Complementary Chromatic Adaptation in a Filamentous Blue-Green Alga. J. Cell Biol. 1973, 58, 419–435. [CrossRef] [PubMed]spa
dcterms.referencesPatil, G.; Chethana, S.; Sridevi, A.S.; Raghavarao, K.S.M.S. Method to Obtain C-Phycocyanin of High Purity. J. Chromatogr. A 2006, 1127, 76–81. [CrossRef]spa
dcterms.referencesAntelo, F.; Anschau, A.; Costa, J.; Kalil, S. Extraction and Purification of C-Phycocyanin from Spirulina platensis in Conventional and Integrated Aqueous Two-Phase Systems. J. Braz. Chem. Soc. 2010, 21, 921–926. [CrossRef]spa
dcterms.referencesAgbede, O.O.; Oke, E.O.; Akinfenwa, S.I.; Wahab, K.T.; Ogundipe, S.; Aworanti, O.A.; Arinkoola, A.O.; Agarry, S.E.; Ogunleye, O.O.; Osuolale, F.N.; et al. Thin Layer Drying of Green Microalgae (Chlorella sp.) Paste Biomass: Drying Characteristics, Energy Requirement and Mathematical Modeling. Bioresour. Technol. Rep. 2020, 11, 100467. [CrossRef]spa
dcterms.referencesLiberti, D.; Imbimbo, P.; Giustino, E.; D’Elia, L.; Ferraro, G.; Casillo, A.; Illiano, A.; Pinto, G.; di Meo, M.C.; Alvarez-Rivera, G.; et al. Inside out Porphyridium cruentum: Beyond the Conventional Biorefinery Concept. ACS Sustain. Chem. Eng. 2023, 11, 381–389. [CrossRef]spa
dcterms.referencesMontoya, E.J.O.; Dorion, S.; Atehortua-Garcés, L.; Rivoal, J. Phycobilin Heterologous Production from the Rhodophyta Porphyridium Cruentum. J. Biotechnol. 2021, 341, 30–42. [CrossRef] [PubMed]spa
dcterms.referencesBueno, M.; Gallego, R.; Chourio, A.M.; Ibáñez, E.; Herrero, M.; Saldaña, M.D.A. Green Ultra-High Pressure Extraction of Bioactive Compounds from Haematococcus pluvialis and Porphyridium cruentum Microalgae. Innov. Food Sci. Emerg. Technol. 2020, 66, 102532. [CrossRef]spa
dcterms.referencesCastro-Varela, P.A.; Celis-Plá, P.S.M.; Abdala-Díaz, R.; Figueroa, F.L. Photobiological Effects on Biochemical Composition in Porphyridium cruentum (Rhodophyta) with a Biotechnological Application. Photochem. Photobiol. 2021, 97, 1032–1042. [CrossRef]spa
dcterms.referencesHuang, Z.; Zhong, C.; Dai, J.; Li, S.; Zheng, M.; He, Y.; Wang, M.; Chen, B. Simultaneous Enhancement on Renewable Bioactive Compounds from Porphyridium cruentum via a Novel Two-Stage Cultivation. Algal Res. 2021, 55, 102270. [CrossRef]spa
dcterms.referencesLi, T.; Xu, J.; Wang, W.; Chen, Z.; Li, C.; Wu, H.; Wu, H.; Xiang, W. A Novel Three-Step Extraction Strategy for High-Value Products from Red Algae Porphyridium purpureum. Foods 2021, 10, 2164. [CrossRef]spa
dcterms.referencesBorovkov, A.B.; Gudvilovich, I.N.; Maltseva, I.A.; Rylkova, O.A.; Maltsev, Y.I. Growth and B-Phycoerythrin Production of Red Microalga Porphyridium purpureum (Porphyridiales, Rhodophyta) under Different Carbon Supply. Microorganisms 2022, 10, 2124. [CrossRef]spa
dcterms.referencesMishra, S.K.; Shrivastav, A.; Mishra, S. Preparation of Highly Purified C-Phycoerythrin from Marine Cyanobacterium Pseudanabaena sp. Protein Expr. Purif. 2011, 80, 234–238. [CrossRef]spa
dcterms.referencesTan, H.T.; Yusoff, F.M.; Khaw, Y.S.; Nazarudin, M.F.; Noor Mazli, N.A.I.; Ahmad, S.A.; Shaharuddin, N.A.; Toda, T. Characterisation and Selection of Freshwater Cyanobacteria for Phycobiliprotein Contents. Aquac. Int. 2022, 31, 447–477. [CrossRef]spa
dcterms.referencesKeithellakpam, O.S.; Nath, T.O.; Oinam, A.S.; Thingujam, I.; Oinam, G.; Dutt, S.G. Effect of External PH on Cyanobacterial Phycobiliproteins Production and Ammonium Excretion. J. Appl. Biol. Biotechnol. 2015, 3, 38–42.spa
dcterms.referencesMcGregor, G.B.; Sendall, B.C. Potamosiphon australiensis gen. nov., sp nov. (Oscillatoriales), a New Filamentous Cyanobacterium from Subtropical North-Eastern Australia. Phytotaxa 2019, 387, 77–93. [CrossRef]spa
dcterms.referencesFratelli, C.; Burck, M.; Amarante, M.C.A.; Braga, A.R.C. Antioxidant Potential of Nature’s “Something Blue”: Something New in the Marriage of Biological Activity and Extraction Methods Applied to C-Phycocyanin. Trends Food Sci. Technol. 2021, 107, 309–323. [CrossRef]spa
dcterms.referencesFerreira-Santos, P.; Nunes, R.; De Biasio, F.; Spigno, G.; Gorgoglione, D.; Teixeira, J.A.; Rocha, C.M.R. Influence of Thermal and Electrical Effects of Ohmic Heating on C-Phycocyanin Properties and Biocompounds Recovery from Spirulina platensis. LWT 2020, 128, 109491. [CrossRef]spa
dcterms.referencesSintra, T.E.; Bagagem, S.S.; Ghazizadeh Ahsaie, F.; Fernandes, A.; Martins, M.; Macário, I.P.E.; Pereira, J.L.; Gonçalves, F.J.M.; Pazuki, G.; Coutinho, J.A.P.; et al. Sequential Recovery of C-Phycocyanin and Chlorophylls from Anabaena cylindrica. Sep. Purif. Technol. 2021, 255, 117538. [CrossRef]spa
dcterms.referencesIlter, I.; Akyıl, S.; Demirel, Z.; Koç, M.; Conk-Dalay, M.; Kaymak-Ertekin, F. Optimization of Phycocyanin Extraction from Spirulina platensis Using Different Techniques. J. Food Compos. Anal. 2018, 70, 78–88. [CrossRef]spa
dcterms.referencesTavanandi, H.A.; Mittal, R.; Chandrasekhar, J.; Raghavarao, K.S.M.S. Simple and Efficient Method for Extraction of C-Phycocyanin from Dry Biomass of Arthospira platensis. Algal Res. 2018, 31, 239–251. [CrossRef]spa
dc.identifier.doihttps://doi.org/10.3390/ biotech12020030
dc.relation.citationeditionVol.12. N°.30 (2023)spa
dc.relation.citationendpage13spa
dc.relation.citationissue30 (2023)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume12spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalcyanobacteriaeng
dc.subject.proposalphycobiliproteinseng
dc.subject.proposalcolorantseng
dc.subject.proposalbiomass dehydrationeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).
Except where otherwise noted, this item's license is described as © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).