Mostrar el registro sencillo del ítem

dc.contributor.authorBautista-Ruiz, Jorge
dc.contributor.authorOlaya-Flórez, Jhon Jairo
dc.contributor.authorAperador Chaparro, William Arnulfo
dc.date.accessioned2021-11-05T16:10:56Z
dc.date.available2021-11-05T16:10:56Z
dc.date.issued2017-09-25
dc.identifier.urihttp://repositorio.ufps.edu.co/handle/ufps/675
dc.description.abstractBismuth silicate, (BSO) thin films have been fabricated by sol–gel process. The stable sol was synthesized by using bismuth nitrate (III) pentahydrate and tetraethyl orthosilicate (TEOS). The films were deposited by spin-coating at 1500 rpm on Stainless Steel 316L. The films were characterized by Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), X-ray diffraction (XRD) besides the measured of the films thickness. This study aimed to evaluate the cell adhesion and cellular proliferation of osteoblast cells on BSO thin films and substrate 316L by MTT assay. It is concluded that the growth of osteoblasts is homogeneous in the surface of the coatings indicating that the medium offered by the films does not present active cytotoxicity and exceed in large number the level of cellular growth compared to Stainless Steeleng
dc.description.abstractPelículas delgadas de silicato de bismuto (BSO) se han fabricado mediante el proceso sol-gel. El sol estable se sintetizó utilizando nitrato de bismuto (III) pentahidrato y tetraetil-ortosilicato (TEOS). Las películas fueron depositadas a 1500 rpm mediante la técnica de centrifugado. Los recubrimientos se caracterizaron por microscopía de fuerza atómica (AFM), microscopía electrónica de barrido (SEM), difracción de rayos-X (DRX) y se midió el espesor de las películas. El objetivo de este estudio fue evaluar la adhesión y la proliferación en células de osteoblastos, mediante el ensayo MMT, al incubarse sobre películas BSO en sustratos de 316L. Se concluyó que el crecimiento de los osteoblastos es homogéneo en la superficie de las películas, indicando que el medio ofrecido por los recubrimientos no presenta actividad citotóxica y favorece los niveles de crecimiento celular en comparación con los resultados obtenidos para los sustratos de acero inoxidablespa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherRevista Facultad de Ingenieríaspa
dc.relation.ispartofRevista Facultad de Ingenieria
dc.rightsThe journal allows and recommends authors to share the published article through academic networks, institutional repositories, and others, such as Mendeley, ResearchGate, Academia.edu, or personal web pages. This, in turn, leads to an increased number of citations and interesting academic exchanges of the published work.eng
dc.sourcehttps://revistas.udea.edu.co/index.php/ingenieria/article/view/327120spa
dc.titleBiocompatibility of bismuth silicate coatings deposited on 316L stainless steel by sol-gel processeng
dc.typeArtículo de revistaspa
dcterms.referencesS. Chenab, P. Conflant, M. Drache, J. Boivin, and G. McDonal, “Solid-state reaction pathways of sillenitephase formation studied by high-temperature X-ray diffractometry and differential thermal analysis,” Materials Research Bulletin, vol. 38, no. 5, pp. 875–897, 2003.spa
dcterms.referencesA. Veber, S. Kunej, R. Korosec, and D. Suvorov, “The effects of solvents on the formation of sol–gel-derived Bi12SiO20 thin films,” Journal of the European Ceramic Society, vol. 30, no. 12, pp. 2475–2480, 2010spa
dcterms.referencesS. Fu and H. Ozoe, “Reaction pathways in the synthesis of photorefractive gamma-Bi12MO20 (M = Si, Ge, or Ti),” J. Am. Ceram. Soc., vol. 80, no. 10, pp. 2501–2509, 1997.spa
dcterms.referencesA. Veber, S. Kunej, and D. Suvorov, “Synthesis and microstructural characterization of Bi12SiO20 (BSO) thin films produced by the sol-gel process,” Ceramics International, vol. 36, no. 1, pp. 245-250, 2010spa
dcterms.referencesE. O. Klebanskii et al., “Thin sol–gel bismuth silicate films,” Phys. Solid State, vol. 41, no. 6, pp. 913–915, 1999spa
dcterms.referencesY. F. Zhou et al., “Space growth studies of Cedoped Bi12SiO20 single cristal,” Materials Science and Engineering: B, vol. 113, no. 3, pp. 179–183, 2004.spa
dcterms.referencesJ. Bautista, W. Aperador, A. Delgado, and M. Díaz, “Synthesis and Characterization of Anticorrosive Coatings of SiO2 -TiO2 – ZrO2 Obtained from Sol-Gel Suspensions,” Int. J. Electrochem. Sci., vol. 9, no. 8, pp. 4144 - 4157, 2014spa
dcterms.referencesC. Brinker and G. Scherer, Sol–Gel Science: The Physics and Chemistry of Sol–Gel Processing, 1st ed. San Diego, USA: Academic Press, 1990spa
dcterms.referencesA. Amiri, “Solid-phase microextraction-based sol–gel technique,” TrAC Trends in Analytical Chemistry, vol. 75, pp. 57–74, 2016.spa
dcterms.referencesM. Oubaha, A. Gorin, C. McDonagh, B. Duffy, and R. Copperwhite, “Development of a multianalyte optical sol–gel biosensor for medical diagnostic,” Sensors and Actuators B: Chemical, vol. 221, pp. 96–103, 2015.spa
dcterms.referencesX. Wu et al., “Mechanically robust superhydrophobic and superoleophobic coatings derived by sol–gel method,” Materials & Design, vol. 89, pp. 1302–1309, 2016spa
dcterms.referencesK. Rubesova, V. Jakes, T. Hlasek, P. Vasek, and P. Matejka, “Gel stabilization in chelate sol–gel preparation of Bi-2223 superconductors,” Journal of Physics and Chemistry of Solids, vol. 73, no. 3, pp. 448– 453, 2012.spa
dcterms.referencesW. Wang, Q. Chen, Q. Cui, J. Ma, and H. Zhang, “Preparation of c-axis oriented YBa2Cu3O7 polycrystalline ceramics by sol–gel method,” Physica C: Superconductivity and its Applications, vol. 511, pp. 1–3, 2015.spa
dcterms.referencesX. G. Cao, S. P. Jiang, and Y. Y. Li “Synthesis and characterization of calcium and iron co-doped lanthanum silicate oxyapatites by sol–gel process for solid oxide fuel cells,” Journal of Power Sources, vol. 293, pp. 806–814, 2015.spa
dcterms.referencesD. Setsoafiaa, P. Hing, S. Jung, A. Azad, and C. Lim, “Sol–gel synthesis and characterization of Zn2+ and Mg2+ doped La10Si6O27 electrolytes for solid oxide fuel cells,” Solid State Sciences, vol. 48, pp. 163–170, 2015spa
dcterms.referencesX. Wang et al., “Graphene/titanium carbide composites prepared by sol–gel infiltration and spark plasma sintering,” Ceramics International, vol. 42, no. 1, pp. 122–131, 2016spa
dcterms.referencesZ. Abbasi, M. Bahrololoum, R. Bagheri, and M. Shariat, “Characterization of the bioactive and mechanical behavior of dental ceramic/sol–gel derived bioactive glass mixtures,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 54, pp. 115–122, 2016.spa
dcterms.referencesJ. Mackenzie and D. Ulrich, Ultrastructure Processing of Advanced Ceramics, 2nd ed. New York, USA: Wiley, 1988.spa
dcterms.referencesL. Fedrizzi, F. Rodriguez, S. Rossi, F. Deflorian, and R. Maggio, “The use of electrochemical techniques to study the corrosion behaviour of organic coatings on steel pretreated with sol–gel zirconia films,” Electrochimica Acta, vol. 46, no. 24-25, pp. 3715–3724, 2001.spa
dcterms.referencesA. Nazeri, P. Trzaskoma, and D. Bauer, “Synthesis and Properties of Cerium and Titanium Oxide Thin Coatings for Corrosion Protection of 304 Stainless Steel,Journal of Sol-Gel Science and Technology, vol. 10, no. 3, pp. 317-331, 1997.spa
dcterms.referencesT. Sugama, “Cerium acetate-modified aminopropylsilane triol: A precursor of corrosionpreventing coating for aluminum-finned condensers,” Journal of Coatings Technology and Research, vol. 2, no. 8, pp. 649-659, 2005spa
dcterms.referencesS. Areva et al., “Sol-gel-derived TiO2-SiO2 implant coatings for direct tissue attachment. Part II: Evaluation of cell response,” J. Mater. Sci. Mater. Med. vol. 18, no. 8, pp. 1633–1642, 2007.spa
dcterms.referencesD. Arcos and M. Vallet, “Sol–gel silica-based biomaterials and bone tissue regeneration,” Acta Biomaterialia, vol. 6, no. 8, pp. 2874-2888, 2010spa
dcterms.referencesS. Plyaka, G.Sokolyanskii, E. Klebanskii, and L. Sadovskaya, “Conductivity of the Bi12SiO20 Thin films,” Condens. Matter Phys., vol. 2, no. 4, pp. 625–630, 1999.spa
dcterms.referencesX. Zhu et al., “Synthesis of BSO (Bi4 Si3 O12) scintillation thin film by sol–gel method,” Journal of Alloys and Compounds, vol. 582, pp. 33–36, 2014.spa
dcterms.references. H. Weidong, Q. Wei, W. Xiaohong, and N. Hailong, “Thin bismuth oxide films prepared through the sol– gel method,” Materials Letters, vol. 61, no. 19-20, pp. 4100–4102, 2007.spa
dcterms.referencesJ. Storkert, A. Blásquez, M. Cañete, R. Horobin, and A. Villanueva, “MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets,” Acta Histochemica, vol. 114, no. 8, pp. 785-796, 2012.spa
dcterms.referencesE. Vogler., “Structure and reactivity of water at biomaterial surfaces,” Adv. Colloid. Interf. Sci., vol. 74, no. 1-3, pp. 69-117, 1998spa
dcterms.referencesA. Ochsenbein et al., “Osteoblast responses to different oxide coatings produced by the sol–gel process on titanium substrates,” Acta Biomaterialia, vol. 4, no. 5, pp. 1506-1517, 2008.spa
dcterms.referencesC. Neinhuis and W. Barthlott, “Characterization and distribution of water-repellent, self-cleaning plant surfaces,” Annals of Botany, vol. 79, no. 6, pp. 667-677, 1997.spa
dcterms.referencesZ. Guo, F. Zhou, J. Hao, and W. Liu, “Stable biomimetic super-hydrophobic engineering materials,” J. Am. Chem. Soc., vol. 127, no. 45, pp. 15670-15671, 2005.spa
dcterms.referencesR. Narhe and D. Beysens, “Water condensation on a super-hydrophobic spike Surface,” Europhys Lett., vol. 75, no. 1, pp. 98–104, 2006.spa
dcterms.referencesN. Blanchemain et al., “Improvement of biological response of YAG Laser irradiated polyethylene,” J. Mater. Chem., vol. 17, no. 38, pp. 4041-4049, 2007spa
dcterms.referencesA. Lupu and T. Popescu, “The noncellular reduction of MTT tetrazolium salt by TiO2 nanoparticles and its implications for cytotoxicity assays,” Toxicology in Vitro, vol. 27, no.5, pp. 1445-1450, 2013.spa
dcterms.referencesY. Liu, D. Peterson, H. Kimura, and D. Schubert, “Mechanism of cellular 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide (MTT) reduction,” J. Neurochem, vol. 69, no.2, pp. 581-593, 1997.spa
dc.identifier.doi10.17533/udea.redin.n84a04
dc.publisher.placeColombiaspa
dc.relation.citationeditionVol.84 No.3.(2017)spa
dc.relation.citationendpage34spa
dc.relation.citationissue3 (2017)spa
dc.relation.citationstartpage27spa
dc.relation.citationvolume84spa
dc.relation.citesBautista-Ruiz, J. H., Olaya-Flórez, J. J., & Aperador-Chaparro, W. (2017). Biocompatibility of bismuth silicate coatings deposited on 316L stainless steel by sol-gel process. Revista Facultad De Ingeniería Universidad De Antioquia, (84), 27–34. https://doi.org/10.17533/udea.redin.n84a04
dc.relation.ispartofjournalRevista Facultad de Ingenieríaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalMTT assayeng
dc.subject.proposalBismuth silicate filmseng
dc.subject.proposalSol-geleng
dc.subject.proposalBiocompatibilityeng
dc.subject.proposalEnsayo MTTspa
dc.subject.proposalpelículas de silicato de bismutospa
dc.subject.proposalbiocompatibilidadspa
dc.title.translatedBiocompatibilidad de recubrimientos de silicato de bismuto depositados sobre sustratos de acero inoxidable 316L por sol-gel
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem