Mostrar el registro sencillo del ítem

dc.contributor.authorcalixto, nelson javier
dc.contributor.authorCORTÉS ZAMBRANO, MELQUISEDEC
dc.contributor.authorGalvis-Castaño, Alberto
dc.contributor.authorCarrillo-Soto, Gustavo A
dc.date.accessioned2024-03-21T16:43:15Z
dc.date.available2024-03-21T16:43:15Z
dc.date.issued2023-07-27
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/6749
dc.description.abstractIn rivers, longitudinal walls are protective structures that are directly supported on the riverbank are frequently used as hydraulic prevent the current from eroding the bank and causing scouring. However, these structures have the potential to block flow and produce erosive processes that progressively worsen scour in their area, leading to faulting and other problems. The current study used Flow-3D software to understand the scour process at the base of longitudinal walls in rivers with a well-graded granular bed. Experimental data from a physical model replicating a river with a longitudinal wall and a well-graded granular bed were used to validate the model. The investigation examined the average flow velocity and its effects on scour behavior along the longitudinal wall using the Flow-3D program. The findings showed that the Flow-3D model could improve the evaluation of debugging processes, because it provided a useful answer that closely matched the experimental data derived from the physical model. Validation with a 0.07 m mesh demonstrated that the Flow-3D model could faithfully simulate the scour process along the longitudinal wall. Overall, the findings of this study suggest that the Flow-3D software can be a useful tool for predicting the scouring process in rivers with well-graded granular beds and longitudinal walls. This is particularly important for engineers and researchers who are interested in designing and optimizing hydraulic structures to mitigate the effects of scouring, because it provided a useful answer that closely matched the experimental data derived from the physical modeleng
dc.format.extent12 Páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherEUREKA: Physics and Engineeringspa
dc.relation.ispartofN. C. Calixto, M. C. Zambrano, A. G. Castaño, and G. C. Soto, “Analysis of a three-dimensional numerical modeling approach for predicting scour processes in longitudinal walls of granular bedding rivers”, Eureka: PE, no. 4, pp. 168-179, Jul. 2023.
dc.rightsThis work is licensed under a Creative Commons Attribution 4.0 International License.eng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://journal.eu-jr.eu/engineering/article/view/2682spa
dc.titleAnalysis of a three-dimensional numerical modeling approach for predicting scour processes in longitudinal walls of granular bedding riverseng
dc.typeArtículo de revistaspa
dcterms.referencesPereira Mendonça, I. S., Daniel Leitão Canilho, H., Maria Senafael, C. (2019). Flow-3D modelling of the debris effect on maximum scour hole depth at bridge piers. 38th IAHR World Congress - “Water: Connecting the World.” doi: https://doi.org/10.3850/38wc092019-1850spa
dcterms.referencesToapaxi, J., Galiano, L., Castro, M., Hidalgo, X., Valencia, N. (2015). Analisis de la Socavacion en Cauces Naturales. Revista Politecnica, 35 (3). Available at: https://revistapolitecnica.epn.edu.ec/ojs2/index.php/revista_politecnica2/article/view/368/pdfspa
dcterms.referencesBento, A. M., Gomes, A., Viseu, T., Couto, L., Pêgo, J. P. (2020). Risk-based methodology for scour analysis at bridge foundations. Engineering Structures, 223, 111115. doi: https://doi.org/10.1016/j.engstruct.2020.111115spa
dcterms.referencesXiang, Q., Wei, K., Li, Y., Zhang, M., Qin, S. (2020). Experimental and Numerical Investigation of Local Scour for Suspended Square Caisson under Steady Flow. KSCE Journal of Civil Engineering, 24 (9), 2682–2693. doi: https://doi.org/10.1007/s12205-020-2343-9spa
dcterms.referencesAlemi, M., Maia, R. (2016). Numerical Simulation of the Flow and Local Scour Process around Single and Complex Bridge Piers. International Journal of Civil Engineering, 16 (5), 475–487. doi: https://doi.org/10.1007/s40999-016-0137-8spa
dcterms.referencesGupta, L. K., Pandey, M., Raj, P. A., Pu, J. H. (2023). Scour Reduction around Bridge Pier Using the Airfoil-Shaped Collar. Hydrology, 10 (4), 77. doi: https://doi.org/10.3390/hydrology10040077spa
dcterms.referencesCoronación, S. (2017). Evaluación de impactos por la extracción de agregados para la construcción en el cauce del río Achamayo, Concepción - Junín. Huancayo. Available at: https://repositorio.upla.edu.pe/handle/20.500.12848/279spa
dcterms.referencesIllidge-Araujo, J., Chacon Velasco, J. L., Chacon Velasco, A. J., Romero Piehadraita, C. A. (2020). Diseño y simulación de un sistema pico-hydro para la generación de energía eléctrica en zonas rurales, mediante un software de mecánica de fluidos computacional. Revista UIS Ingenierías, 19 (1), 155–170. doi: https://doi.org/10.18273/revuin.v19n1-2020015spa
dcterms.referencesLiu, M., Wang, H., Tang, G., Shao, F., Jin, X. (2022). Investigation of local scour around two vertical piles by using numerical method. Ocean Engineering, 244, 110405. doi: https://doi.org/10.1016/j.oceaneng.2021.110405spa
dcterms.referencesDelgado-Mejia, A. L., Olmos-Villalba, L. C., Rivero-Mejia, A. E. (2014) Estudio comparativo del ciclo indicado de un motor diesel mediante simulación CFD y datos experimentales. Revista UIS Ingenierías, 13 (1), 23–31. Available at: https://revistas.uis.edu.co/index.php/revistauisingenierias/article/view/23-31spa
dcterms.referencesBasante-Bolaños, E. A., Villacrés-Martinez, M. A., Cruz-Velasco, L. G. (2021). Simulación numérica 2D subrasantes de baja resistencia, estabilizadas con material granular de sobretamaño (rajón). Revista UIS Ingenierías, 20 (3). doi: https://doi.org/10.18273/revuin.v20n3-2021004spa
dcterms.referencesTaha, N., El-Feky, M. M., El-Saiad, A. A., Fathy, I. (2020). Numerical investigation of scour characteristics downstream of blocked culverts. Alexandria Engineering Journal, 59 (5), 3503–3513. doi: https://doi.org/10.1016/j.aej.2020.05.032spa
dcterms.referencesMonroy-González, H. (2021). Evaluación de eficiencia hidráulica en rejillas de sumideros mediante investigación numérica tridimensional y verificación de resultados de experimentación física de prototipos. Universidad Santo Tomás. Available at: https://repositorioslatinoamericanos.uchile.cl/handle/2250/3680967spa
dcterms.referencesKaurav, R., Mohapatra, P. (2019). Effect of rheology on earthen embankment breaching. 38th IAHR World Congress - “Water: Connecting the World.” doi: https://doi.org/10.3850/38wc092019-1505spa
dcterms.referencesCevallos Cevallos, P. E., Ochoa Rodriguez, D. M. (2020). Modelación numérica (CFD) del lavado de sedimentos en el embalse de la presa Toachi. Programa FLOW-3D. Quito: EPN. Available at: https://bibdigital.epn.edu.ec/handle/15000/21320spa
dcterms.referencesGhasemi, M., Soltani-Gerdefaramarzi, S. (2017). The scour bridge simulation around a cylindrical pier using Flow-3D. Journal of Hydrosciences and Environment, 1 (2), 46–54. doi: https://doi.org/10.22111/JHE.2017.3357spa
dcterms.referencesDi Pietro, P., Mahajan, R. R. (2021). Erosion Control Solutions with Case Studies. Lecture Notes in Civil Engineering, 71–94. doi: https://doi.org/10.1007/978-981-16-4783-3_6spa
dcterms.referencesYamaguchi, S., Kyuka, T. (2019). A hydraulic model experiment on the relationship between sediment transport characteristics and changes inwatercourses arounda low-water revetment or spur dikes. 38th IAHR World Congress - “Water: Connecting the World.” doi: https://doi.org/10.3850/38wc092019-0245spa
dcterms.referencesHo, D. K. H., Riddette, K. M. (2010). Application of computational fluid dynamics to evaluate hydraulic performance of spillways in australia. Australian Journal of Civil Engineering, 6 (1), 81–104. doi: https://doi.org/10.1080/14488353.2010.11463946spa
dcterms.referencesJalal, H. K., Hassan, W. H. (2020). Three-dimensional numerical simulation of local scour around circular bridge pier using Flow-3D software. IOP Conference Series: Materials Science and Engineering, 745, 012150. doi: https://doi.org/10.1088/1757-899x/745/1/012150spa
dcterms.referencesShamohamadi, B., Mehboudi, A. (2016). Analyzing Parameters Influencing Scour Bed in Confluence Channels Using Flow3D Numerical Model. Civil Engineering Journal, 2 (10), 529–537. doi: https://doi.org/10.28991/cej-2016-00000055spa
dcterms.referencesAl-Zubaidy, R. A., Hilo, A. N. (2022). Numerical investigation of flow behavior at the lateral intake using Computational Fluid Dynamics (CFD). Materials Today: Proceedings, 56, 1914–1926. doi: https://doi.org/10.1016/j.matpr.2021.11.172spa
dc.identifier.doihttps://doi.org/10.21303/2461-4262.2023.002682
dc.publisher.placeEstoniaspa
dc.relation.citationeditionVol.4 (2023)spa
dc.relation.citationendpage179spa
dc.relation.citationissue4 (2023)spa
dc.relation.citationstartpage168spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalFlow-3D softwareeng
dc.subject.proposalGranular bedeng
dc.subject.proposallongitudinal walleng
dc.subject.proposalscoureng
dc.subject.proposalthreeeng
dc.subject.proposaldimensional numerical modelingeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

This work is licensed under a Creative Commons Attribution 4.0 International License.
Excepto si se señala otra cosa, la licencia del ítem se describe como This work is licensed under a Creative Commons Attribution 4.0 International License.