Mostrar el registro sencillo del ítem

dc.contributor.authorUrbina-Suarez, Nestor Andres
dc.contributor.authorSalcedo Pabón, Cristian Jesús
dc.contributor.authorContreras Ropero, Jefferson Eduardo
dc.contributor.authorLópez Barrera, German Luciano
dc.contributor.authorGarcía-Martinez, Janet
dc.contributor.authorBarajas Solano, andres F
dc.contributor.authorMachuca-Martínez, Fiderman
dc.date.accessioned2024-03-20T15:52:44Z
dc.date.available2024-03-20T15:52:44Z
dc.date.issued2023-09-28
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/6743
dc.description.abstractThis study investigates the influence of photoperiod and wastewater concentration on the growth of microalgae and cyanobacteria for the removal of environmentally significant parameters (COD, BOD, Cr, Fe, color, chlorides, nitrogen compounds, and phosphates) from dyeing wastewater. A two-factor central composite design with surface response was employed, involving two algae species (Chlorella and Scenedesmus sp.) and two cyanobacteria species (Hapalosiphon and Oscillatoriasp.). The findings indicated that extended photoperiods (>13 h) and higher wastewater concentrations (70–80% v/v) enhanced biomass production across all strains. However, Hapalosiphon and Chlorellasp. (1.6 and 0.45 g/L) exhibited better tolerance to the wastewater’s high toxicity, resulting in higher biomass concentrations and improved COD and BOD removal by Hapalosiphon sp. (75% and 80%,respectively). Further analysis of the obtained biomass revealed their potential applications. Among the cyanobacteria, Hapalosiphon sp. synthesized the highest concentrations of total proteins and lipids (38% and 28% w/w, respectively), while Oscillatoria sp. displayed a high protein content (42% w/w). In contrast, the algae demonstrated a strong propensity for storing substantial quantities of total carbohydrates (65% and 57% w/w for Scenedesmus and Chlorella sp., respectively). These results signify the feasibility of cultivating photosynthetic microorganisms in industrial dyeing wastewateras a sustainable source of nutrients for targeted metabolite production.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherChemEngineeringspa
dc.rights© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).eng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://www.mdpi.com/2305-7084/7/5/90spa
dc.titleA Phytochemical Approach to the Removal of Contaminants from Industrial Dyeing Wastewatereng
dc.typeArtículo de revistaspa
dcterms.referencesCeretta, M.B.; Vieira, Y.; Wolski, E.A.; Foletto, E.L.; Silvestri, S. Biological Degradation Coupled to Photocatalysis by ZnO/Polypyrrole Composite for the Treatment of Real Textile Wastewater. J. Water Process Eng. 2020, 35, 101230. [CrossRef]spa
dcterms.referencesHubadillah, S.K.; Othman, M.H.D.; Tai, Z.S.; Jamalludin, M.R.; Yusuf, N.K.; Ahmad, A.; Rahman, M.A.; Jaafar, J.; Kadir, S.H.S.A.; Harun, Z. Novel Hydroxyapatite-Based Bio-Ceramic Hollow Fiber Membrane Derived from Waste Cow Bone for Textile Wastewater Treatment. Chem. Eng. J. 2020, 379, 122396. [CrossRef]spa
dcterms.referencesYuan, Y.; Ning, X.A.; Zhang, Y.; Lai, X.; Li, D.; He, Z.; Chen, X. Chlorobenzene Levels, Component Distribution, and Ambient Severity in Wastewater from Five Textile Dyeing Wastewater Treatment Plants. Ecotoxicol. Environ. Saf. 2020, 193, 110257. [CrossRef] [PubMed]spa
dcterms.referencesChhikara, S.; Hooda, A.; Rana, L.; Dhankhar, R. Chromium (VI) Biosorption by Immobilized Aspergillus Niger in Continuous Flow System with Special Reference to FTIR Analysis. J. Environ. Biol. 2010, 31, 561–566. [PubMed]spa
dcterms.referencesDaneshvar, E.; Zarrinmehr, M.J.; Kousha, M.; Hashtjin, A.M.; Saratale, G.D.; Maiti, A.; Vithanage, M.; Bhatnagar, A. Hexavalent Chromium Removal from Water by Microalgal-Based Materials: Adsorption, Desorption and Recovery Studies. Bioresour. Technol. 2019, 293, 122064. [CrossRef] [PubMed]spa
dcterms.referencesChung, K.T. Mutagenicity and Carcinogenicity of Aromatic Amines Metabolically Produced from Azo Dyes. J. Environ. Sci. Health Part C 2008, 18, 51–74. [CrossRef]spa
dcterms.referencesKumar, P.; Sumangala, B. Decolorization of Azo Dye Red 3BN by Bacteria. Int. Res. J. Biol. Sci. 2012, 1, 46–52spa
dcterms.referencesHolkar, C.R.; Jadhav, A.J.; Pinjari, D.V.; Mahamuni, N.M.; Pandit, A.B. A Critical Review on Textile Wastewater Treatments: Possible Approaches. J. Environ. Manag. 2016, 182, 351–366. [CrossRef]spa
dcterms.referencesLiang, C.Z.; Sun, S.P.; Li, F.Y.; Ong, Y.K.; Chung, T.S. Treatment of Highly Concentrated Wastewater Containing Multiple Synthetic Dyes by a Combined Process of Coagulation/Flocculation and Nanofiltration. J. Membr. Sci. 2014, 469, 306–315. [CrossRef]spa
dcterms.referencesYeap, K.L.; Teng, T.T.; Poh, B.T.; Morad, N.; Lee, K.E. Preparation and Characterization of Coagulation/Flocculation Behavior of a Novel Inorganic–Organic Hybrid Polymer for Reactive and Disperse Dyes Removal. Chem. Eng. J. 2014, 243, 305–314. [CrossRef]spa
dcterms.referencesChollom, M.N.; Rathilal, S.; Pillay, V.L.; Alfa, D. The Applicability of Nanofiltration for the Treatment and Reuse of Textile Reactive Dye Effluent. Water SA 2015, 41, 398–405. [CrossRef]spa
dcterms.referencesKoyuncu, I.; Güney, K. Membrane-Based Treatment of Textile Industry Wastewaters. Encycl. Membr. Sci. Technol. 2013, 1–12. [CrossRef]spa
dcterms.referencesAuta, M.; Hameed, B.H. Preparation of Waste Tea Activated Carbon Using Potassium Acetate as an Activating Agent for Adsorption of Acid Blue 25 Dye. Chem. Eng. J. 2011, 171, 502–509. [CrossRef]spa
dcterms.referencesGalán, J.; Rodríguez, A.; Gómez, J.M.; Allen, S.J.; Walker, G.M. Reactive Dye Adsorption onto a Novel Mesoporous Carbon. Chem. Eng. J. 2013, 219, 62–68. [CrossRef]spa
dcterms.referencesZuorro, A.; Lavecchia, R. Evaluation of UV/H2O2 Advanced Oxidation Process (AOP) for the Degradation of Diazo Dye Reactive Green 19 in Aqueous Solution. New Pub Balaban 2014, 52, 1571–1577. [CrossRef]spa
dcterms.references. Gupta, V.K.; Jain, R.; Mittal, A.; Saleh, T.A.; Nayak, A.; Agarwal, S.; Sikarwar, S. Photo-Catalytic Degradation of Toxic Dye Amaranth on TiO(2)/UV in Aqueous Suspensions. Mater. Sci. Eng. C Mater. Biol. Appl. 2012, 32, 12–17. [CrossRef] [PubMed]spa
dcterms.referencesMishra, K.P.; Gogate, P.R. Intensification of Degradation of Rhodamine B Using Hydrodynamic Cavitation in the Presence of Additives. Sep. Purif. Technol. 2010, 75, 385–391. [CrossRef]spa
dcterms.referencesWang, Z.; Xue, M.; Huang, K.; Liu, Z.; Wang, Z.; Xue, M.; Huang, K.; Liu, Z. Textile Dyeing Wastewater Treatment. Adv. Treat. Text. Effl. 2011, 5, 91–116. [CrossRef]spa
dcterms.referencesHayat, H.; Mahmood, Q.; Pervez, A.; Bhatti, Z.A.; Baig, S.A. Comparative Decolorization of Dyes in Textile Wastewater Using Biological and Chemical Treatment. Sep. Purif. Technol. 2015, 154, 149–153. [CrossRef]spa
dcterms.referencesCastellanos-Estupiñan, M.A.; Carrillo-Botello, A.M.; Rozo-Granados, L.S.; Becerra-Moreno, D.; García-Martínez, J.B.; UrbinaSuarez, N.A.; López-Barrera, G.L.; Barajas-Solano, A.F.; Bryan, S.J.; Zuorro, A. Removal of Nutrients and Pesticides from Agricultural Runoff Using Microalgae and Cyanobacteria. Water 2022, 14, 558. [CrossRef]spa
dcterms.referencesZuorro, A.; García-Martínez, J.B.; Barajas-Solano, A.F. The Application of Catalytic Processes on the Production of Algae-Based Biofuels: A Review. Catalysts 2021, 11, 22. [CrossRef]spa
dcterms.referencesGuiza-Franco, L.; Orozco-Rojas, L.G.; Sanchez-Galvis, M.; Garcia-Martinez, J.B.; Barajas-Ferreira, C.; Zuorro, A.; Barajas-Solano, A.F. Production of Chlorella Vulgaris Biomass on UV-Treated Wastewater as an Alternative for Environmental Sustainability on High-Mountain Fisheries. Chem. Eng. Trans. 2018, 64, 517–522. [CrossRef]spa
dcterms.referencesQuintero-Dallos, V.; García-Martínez, J.B.; Contreras-Ropero, J.E.; Barajas-Solano, A.F.; Barajas-Ferrerira, C.; Lavecchia, R.; Zuorro, A. Vinasse as a Sustainable Medium for the Production of Chlorella Vulgaris UTEX 1803. Water 2019, 11, 1526. [CrossRef]spa
dcterms.referencesGarcía-Martínez, J.B.; Sanchez-Tobos, L.P.; Carvajal-Albarracín, N.A.; Barajas-Solano, A.F.; Barajas-Ferreira, C.; Kafarov, V.; Zuorro, A. The Circular Economy Approach to Improving CNP Ratio in Inland Fishery Wastewater for Increasing Algal Biomass Production. Water 2022, 14, 749. [CrossRef]spa
dcterms.referencesGarcía-Martínez, J.B.; Contreras-Ropero, J.E.; Urbina-Suarez, N.A.; López-Barrera, G.L.; Barajas-Solano, A.F.; Kafarov, V.; BarajasFerreira, C.; Ibarra-Mojica, D.M.; Zuorro, A. A Simulation Analysis of a Microalgal-Production Plant for the Transformation of Inland-Fisheries Wastewater in Sustainable Feed. Water 2022, 14, 250. [CrossRef]spa
dcterms.referencesAragaw, T.A.; Asmare, A.M. Phycoremediation of Textile Wastewater Using Indigenous Microalgae. Water Pract. Technol. 2018, 13, 274–284. [CrossRef]spa
dcterms.referencesDaneshvar, N.; Ayazloo, M.; Khataee, A.R.; Pourhassan, M. Biological Decolorization of Dye Solution Containing Malachite Green by Microalgae Cosmarium sp. Bioresour. Technol. 2007, 98, 1176–1182. [CrossRef]spa
dcterms.referencesDhaouefi, Z.; Toledo-Cervantes, A.; García, D.; Bedoui, A.; Ghedira, K.; Chekir-Ghedira, L.; Muñoz, R. Assessing Textile Wastewater Treatment in an Anoxic-Aerobic Photobioreactor and the Potential of the Treated Water for Irrigation. Algal Res. 2018, 29, 170–178. [CrossRef]spa
dcterms.referencesNagaraj, S.; Sagaya, J.P.J.; Anand, J.; Malairaj, S.; Lakshmaiah, B.; Sathya, R.; MubarakAli, D. A Cyanobacterium Treated Textile Wastewater for the Plant Growth Enhancement: Experimental Study. Appl. Biochem. Biotechnol. 2022. [CrossRef]spa
dcterms.referencesSharif, A. Microbial Degradation of Textile Industry Effluents: A Review. Pure Appl. Biol. 2020, 9, 2361–2382. [CrossRef]spa
dcterms.referencesAl-Tohamy, R.; Ali, S.S.; Li, F.; Okasha, K.M.; Mahmoud, Y.A.G.; Elsamahy, T.; Jiao, H.; Fu, Y.; Sun, J. A Critical Review on the Treatment of Dye-Containing Wastewater: Ecotoxicological and Health Concerns of Textile Dyes and Possible Remediation Approaches for Environmental Safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160. [CrossRef] [PubMed]spa
dcterms.referencesLipps, W.C.; Braun-Howland, E.B.; Baxter, T.E. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017; ISBN 0875532993.spa
dcterms.referencesUrbina-Suarez, N.A.; Ayala-González, D.D.; Rivera-Amaya, J.D.; Barajas-Solano, A.F.; Machuca-Martínez, F. Evaluation of the Light/Dark Cycle and Concentration of Tannery Wastewater in the Production of Biomass and Metabolites of Industrial Interest from Microalgae and Cyanobacteria. Water 2022, 14, 346. [CrossRef]spa
dcterms.referencesMoheimani, N.R.; Borowitzka, M.A.; Isdepsky, A.; Sing, S.F. Standard Methods for Measuring Growth of Algae and Their Composition BT—Algae for Biofuels and Energy; Borowitzka, M.A., Moheimani, N.R., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 265–284, ISBN 978-94-007-5479-9.spa
dcterms.referencesMoheimani, N.R.; Webb, J.P.; Borowitzka, M.A. Bioremediation and Other Potential Applications of Coccolithophorid Algae: A Review. Algal Res. 2012, 1, 120–133. [CrossRef]spa
dcterms.referencesUrbina-Suarez, N.A.; Rivera-Caicedo, C.; González-Delgado, Á.D.; Barajas-Solano, A.F.; Machuca-Martínez, F. BicarbonateHydrogen Peroxide System for Treating Dyeing Wastewater: Degradation of Organic Pollutants and Color Removal. Toxics 2023, 11, 366. [CrossRef] [PubMed]spa
dcterms.referencesSlavov, A.K. General Characteristics and Treatment Possibilities of Dairy Wastewater—A Review. Food Technol. Biotechnol. 2017, 55, 14. [CrossRef] [PubMed]spa
dcterms.referencesUrbina-Suarez, N.A.; Barajas-Solano, A.F.; Zuorro, A.; Machuca, F. Advanced Oxidation Processes with Uv-H2O2 for Nitrification and Decolorization of Dyehouse Wastewater. Chem. Eng. Trans. 2022, 95, 235–240. [CrossRef]spa
dcterms.referencesSilva, L.G.M.; Moreira, F.C.; Cechinel, M.A.P.; Mazur, L.P.; de Souza, A.A.U.; Souza, S.M.A.G.U.; Boaventura, R.A.R.; Vilar, V.J.P. Integration of Fenton’s Reaction Based Processes and Cation Exchange Processes in Textile Wastewater Treatment as a Strategy for Water Reuse. J. Environ. Manag. 2020, 272, 111082. [CrossRef]spa
dcterms.referencesUrbina-Suárez, N.A. Different Effect of Nitrogen Sources in Autotrophic and Mixotrophic Culture of Scenedesmus sp. for Biomass and Carotenoids Production Using Acidic Coal Mine Drainage Effluents. Ing. Y Compet. 2022, 24. [CrossRef]spa
dcterms.referencesEsther Baby, J.; Jaambavi, I.; Rajeswari, G.; Akshaya, T. Optimization Removal of Colour and Organic Solid Pollutants from Textile Industry Wastewater by Electrocoagulation. Mater. Today Proc. 2021. [CrossRef]spa
dcterms.referencesSubashini, P.S.; Rajiv, P. An Investigation of Textile Wastewater Treatment Using Chlorella Vulgaris. Orient. J. Chem. 2018, 34, 2517–2524. [CrossRef]spa
dcterms.referencesHussain, Z.; Arslan, M.; Shacir, G.; Malik, M.H.; Mohsin, M.; Iqbal, S.; Afzal, M. Remediation of Textile Bleaching Effluent by Bacterial Augmented Horizontal Flow and Vertical Flow Constructed Wetlands: A Comparison at Pilot Scale. Sci. Total Environ. 2019, 685, 370–379. [CrossRef] [PubMed]spa
dcterms.referencesRoy, M.; Saha, R. Dyes and Their Removal Technologies from Wastewater: A Critical Review. Intell. Environ. Data Monit. Pollut. Manag. 2021, 127–160. [CrossRef]spa
dcterms.referencesYao, J.; Mei, Y.; Xia, G.; Lu, Y.; Xu, D.; Sun, N.; Wang, J.; Chen, J. Process Optimization of Electrochemical Oxidation of Ammonia to Nitrogen for Actual Dyeing Wastewater Treatment. Int. J. Environ. Res. Public Health 2019, 16, 2931. [CrossRef] [PubMed]spa
dcterms.referencesde Carvalho, J.C.; Borghetti, I.A.; Cartas, L.C.; Woiciechowski, A.L.; Soccol, V.T.; Soccol, C.R. Biorefinery Integration of Microalgae Production into Cassava Processing Industry: Potential and Perspectives. Bioresour. Technol. 2018, 247, 1165–1172. [CrossRef] [PubMed]spa
dcterms.referencesGita, S.; Shukla, S.P.; Saharan, N.; Prakash, C.; Deshmukhe, G. Toxic Effects of Selected Textile Dyes on Elemental Composition, Photosynthetic Pigments, Protein Content and Growth of a Freshwater Chlorophycean Alga Chlorella Vulgaris. Bull. Environ. Contam. Toxicol. 2019, 102, 795–801. [CrossRef] [PubMed]spa
dcterms.referencesJaved, F.; Rashid, N.; Fazal, T.; Hafeez, A.; Rehman, F. Integration of Real Industrial Wastewater Streams to Enhance Chlorella Vulgaris Growth: Nutrient Sequestration and Biomass Production. Water Air Soil Pollut. 2023, 234, 1–11. [CrossRef]spa
dcterms.referencesEl-Sheekh, M.M.; El-Shanshoury, A.R.; Abou-El-Souod, G.W.; Gharieb, D.Y.; El Shafay, S.M. Decolorization of Dyestuffs by Some Species of Green Algae and Cyanobacteria and Its Consortium. Int. J. Environ. Sci. Technol. 2021, 18, 3895–3906. [CrossRef]spa
dcterms.referencesShetty, K.; Krishnakumar, G. Algal and Cyanobacterial Biomass as Potential Dye Biodecolorizing Material: A Review. Biotechnol. Lett. 2020, 42, 2467–2488. [CrossRef]spa
dcterms.referencesDellamatrice, P.M.; Silva-Stenico, M.E.; de Moraes, L.A.B.; Fiore, M.F.; Monteiro, R.T.R. Degradation of Textile Dyes by Cyanobacteria. Braz. J. Microbiol. 2017, 48, 25. [CrossRef]spa
dcterms.referencesKumar, A.; Bera, S. Revisiting Nitrogen Utilization in Algae: A Review on the Process of Regulation and Assimilation. Bioresour. Technol. Rep. 2020, 12, 100584. [CrossRef]spa
dcterms.referencesCuellar-Bermudez, S.P.; Aleman-Nava, G.S.; Chandra, R.; Garcia-Perez, J.S.; Contreras-Angulo, J.R.; Markou, G.; Muylaert, K.; Rittmann, B.E.; Parra-Saldivar, R. Nutrients Utilization and Contaminants Removal. A Review of Two Approaches of Algae and Cyanobacteria in Wastewater. Algal Res. 2017, 24, 438–449. [CrossRef]spa
dcterms.referencesFazal, T.; Rehman, M.S.U.; Javed, F.; Akhtar, M.; Mushtaq, A.; Hafeez, A.; Alaud Din, A.; Iqbal, J.; Rashid, N.; Rehman, F. Integrating Bioremediation of Textile Wastewater with Biodiesel Production Using Microalgae (Chlorella vulgaris). Chemosphere 2021, 281, 130758. [CrossRef] [PubMed]spa
dcterms.referencesGonçalves, A.L. The Use of Microalgae and Cyanobacteria in the Improvement of Agricultural Practices: A Review on Their Biofertilising, Biostimulating and Biopesticide Roles. Appl. Sci. 2021, 11, 871. [CrossRef]spa
dcterms.referencesTouliabah, H.E.S.; El-Sheekh, M.M.; Ismail, M.M.; El-Kassas, H. A Review of Microalgae- and Cyanobacteria-Based Biodegradation of Organic Pollutants. Molecules 2022, 27, 1141. [CrossRef] [PubMed]spa
dcterms.referencesTamil Selvan, S.; Dakshinamoorthi, B.M.; Chandrasekaran, R.; Muthusamy, S.; Ramamurthy, D.; Balasundaram, S. Integrating Eco-Technological Approach for Textile Dye Effluent Treatment and Carbon Dioxide Capturing from Unicellular Microalga Chlorella Vulgaris RDS03: A Synergistic Method. Int. J. Phytoremediat. 2023, 25, 466–482. [CrossRef] [PubMed]spa
dcterms.referencesSelvan, B.K.; Pandiyan, R.; Vaishnavi, M.; Das, S.; Thirunavoukkarasu, M. Ameliorative Biodegradation of Hazardous Textile Industrial Wastewater Dyes by Potential Microalgal sp. Biomass Convers. Biorefinery 2022, 1–12. [CrossRef]spa
dcterms.referencesArutselvan, C.; Narchonai, G.; Pugazhendhi, A.; kumar Seenivasan, H.; LewisOscar, F.; Thajuddin, N. Phycoremediation of Textile and Tannery Industrial Effluents Using Microalgae and Their Consortium for Biodiesel Production. J. Clean. Prod. 2022, 367, 133100. [CrossRef]spa
dcterms.referencesDing, T.; Yang, M.; Zhang, J.; Yang, B.; Lin, K.; Li, J.; Gan, J. Toxicity, Degradation and Metabolic Fate of Ibuprofen on Freshwater Diatom Navicula sp. J. Hazard. Mater. 2017, 330, 127–134. [CrossRef]spa
dc.identifier.doihttps://doi.org/10.3390/ chemengineering7050090
dc.relation.citationeditionVol.7 (2023)spa
dc.relation.citationendpage18spa
dc.relation.citationissue(2023)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume7spa
dc.relation.citesUrbina-Suarez, N.A.; Salcedo-Pabón, C.J.; Contreras-Ropero, J.E.; López-Barrera, G.L.; García-Martínez, J.B.; Barajas-Solano, A.F.; Machuca-Martínez, F. A Phytochemical Approach to the Removal of Contaminants from Industrial Dyeing Wastewater. ChemEngineering 2023, 7, 90. https://doi.org/10.3390/ chemengineering7050090
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposaldyeing wastewatereng
dc.subject.proposalcyanobacteriaeng
dc.subject.proposalmicroalgaeeng
dc.subject.proposalbiomasseng
dc.subject.proposalmetaboliteseng
dc.subject.proposalresponse surfaceeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).
Excepto si se señala otra cosa, la licencia del ítem se describe como © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).