Mostrar el registro sencillo del ítem
Enhanced UV/H2O2 System for the Oxidation of Organic Contaminants and Ammonia Transformation from Tannery Effluents
dc.contributor.author | Urbina-Suarez, Nestor Andres | |
dc.contributor.author | López Barrera, German Luciano | |
dc.contributor.author | García-Martinez, Janet | |
dc.contributor.author | Barajas Solano, andres F | |
dc.contributor.author | Machuca-Martínez, Fiderman | |
dc.contributor.author | ZUORRO, Antonio | |
dc.date.accessioned | 2024-03-20T14:20:28Z | |
dc.date.available | 2024-03-20T14:20:28Z | |
dc.date.issued | 2023-10-27 | |
dc.identifier.uri | https://repositorio.ufps.edu.co/handle/ufps/6739 | |
dc.description.abstract | In this work, a UV/H2O2 system in real tannery wastewater was evaluated by an experimental design with optimal stage 2-level I-optimal reaction surface using Design Expert software to analyze the effects of temperature, pH, UV lamp power (W), and H2O2 concentration on COD removal and nitrification. It was found that pH and temperature were the variables that affected the process the most. It was found that an acidic pH of 4.5–5.5 and temperatures between 50 and 70 ◦C favored improved COD and ammonium oxidation. The process conditions—temperature 54.6 ◦C, pH 4, pW-UV 60 W and hydrogen peroxide 0.5—were confirmed in the next phase of the study using a one-way statistical analysis ANOVA. Under these conditions, the nitrite removal rate was 98.4%, ammonium 94.53%, chromium 92.3%, chlorides 62.4%, BOD 67.4%, COD 44.5%, and color 48%. | eng |
dc.format.extent | 15 Páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Processes | spa |
dc.relation.ispartof | Urbina-Suarez, N.A.; López-Barrera, G.L.; García-Martínez, J.B.; Barajas-Solano, A.F.; MachucaMartínez, F.; Zuorro, A. Enhanced UV/H2O2 System for the Oxidation of Organic Contaminants and Ammonia Transformation from Tannery Effluents. Processes 2023, 11, 3091. https://doi.org/10.3390/ pr11113091 | |
dc.rights | © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). | eng |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | spa |
dc.source | https://www.mdpi.com/2227-9717/11/11/3091 | spa |
dc.title | Enhanced UV/H2O2 System for the Oxidation of Organic Contaminants and Ammonia Transformation from Tannery Effluents | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Sivagami, K.; Sakthivel, K.P.; Nambi, I.M. Advanced Oxidation Processes for the Treatment of Tannery Wastewater. J. Environ. Chem. Eng. 2018, 6, 3656–3663. [CrossRef] | spa |
dcterms.references | Urbina-Suarez, N.A.; Machuca-Martínez, F.; Barajas-Solano, A.F. Advanced Oxidation Processes and Biotechnological Alternatives for the Treatment of Tannery Wastewater. Molecules 2021, 26, 3222. [CrossRef] | spa |
dcterms.references | Hansen, É.; de Aquim, P.M.; Hansen, A.W.; Cardoso, J.K.; Ziulkoski, A.L.; Gutterres, M. Impact of Post-Tanning Chemicals on the Pollution Load of Tannery Wastewater. J. Environ. Manag. 2020, 269, 110787. [CrossRef] | spa |
dcterms.references | Chhikara, S.; Hooda, A.; Rana, L.; Dhankhar, R. Chromium (VI) Biosorption by Immobilized Aspergillus Niger in Continuous Flow System with Special Reference to FTIR Analysis. J. Environ. Biol. 2010, 31, 561–566. | spa |
dcterms.references | Daneshvar, E.; Zarrinmehr, M.J.; Kousha, M.; Hashtjin, A.M.; Saratale, G.D.; Maiti, A.; Vithanage, M.; Bhatnagar, A. Hexavalent Chromium Removal from Water by Microalgal-Based Materials: Adsorption, Desorption and Recovery Studies. Bioresour. Technol. 2019, 293, 122064. [CrossRef] | spa |
dcterms.references | Zhao, J.; Wu, Q.; Tang, Y.; Zhou, J.; Guo, H. Tannery Wastewater Treatment: Conventional and Promising Processes, an Updated 20-Year Review. J. Leather Sci. Eng. 2022, 4, 1–22. [CrossRef] | spa |
dcterms.references | Achouri, O.; Panico, A.; Bencheikh-Lehocine, M.; Derbal, K.; Pirozzi, F. Effect of Chemical Coagulation Pretreatment on Anaerobic Digestion of Tannery Wastewater. J. Environ. Eng. 2017, 143, 04017039. [CrossRef] | spa |
dcterms.references | Achouri, O.; Panico, A.; Bencheikh-Lehocine, M.; Derbal, K.; Pirozzi, F. Effect of Chemical Coagulation Pretreatment on Anaerobic Digestion of Tannery Wastewater. J. Environ. Eng. 2017, 143, 04017039. [CrossRef] | spa |
dcterms.references | Lofrano, G.; Meriç, S.; Zengin, G.E.; Orhon, D. Chemical and Biological Treatment Technologies for Leather Tannery Chemicals and Wastewaters: A Review. Sci. Total. Environ. 2013, 461–462, 265–281. [CrossRef] | spa |
dcterms.references | Urbina-Suarez, N.A.; Ayala-González, D.D.; Rivera-Amaya, J.D.; Barajas-Solano, A.F.; Machuca-Martínez, F. Evaluation of the Light/Dark Cycle and Concentration of Tannery Wastewater in the Production of Biomass and Metabolites of Industrial Interest from Microalgae and Cyanobacteria. Water 2022, 14, 346. [CrossRef] | spa |
dcterms.references | Haydar, S.; Aziz, J.; Saeed, M. Biological Treatment of Tannery Wastewater Using Activated Sludge Process. Pak. J. Eng. Appl. Sci. 2007, 1, 61–66. | spa |
dcterms.references | GracePavithra, K.; Jaikumar, V.; Kumar, P.S.; Sundar Rajan, P.S. A Review on Cleaner Strategies for Chromium Industrial Wastewater: Present Research and Future Perspective. J. Clean. Prod. 2019, 228, 580–593. [CrossRef] | spa |
dcterms.references | Urbina-Suarez, N.A.; Rivera-Caicedo, C.; González-Delgado, D.; Barajas-Solano, A.F.; Machuca-Martínez, F. BicarbonateHydrogen Peroxide System for Treating Dyeing Wastewater: Degradation of Organic Pollutants and Color Removal. Toxics 2023, 11, 366. [CrossRef] | spa |
dcterms.references | Korpe, S.A.; Landge, V.; Hakke, V.S.; Rao, P.V.; Sonawane, S.H.; Sonawane, S.S. Advanced Oxidation Processes for Tannery Industry Wastewater Treatment. In Novel Approaches towards Wastewater Treatment and Resource Recovery Technologies; Elsevier: Amsterdam, The Netherlands, 2022; pp. 253–276. [CrossRef] | spa |
dcterms.references | Jessieleena, A.A.; Priyanka, M.; Saravanakumar, M.P. Comparative Study of Fenton, Fe2+/NaOCl and Fe2+/(NH4 )2S2O8 on Tannery Sludge Dewaterability, Degradability of Organics and Leachability of Chromium. J. Hazard. Mater. 2021, 402, 123495. [CrossRef] [PubMed] | spa |
dcterms.references | Jessieleena, A.A.; Priyanka, M.; Saravanakumar, M.P. Comparative Study of Fenton, Fe2+/NaOCl and Fe2+/(NH4 )2S2O8 on Tannery Sludge Dewaterability, Degradability of Organics and Leachability of Chromium. J. Hazard. Mater. 2021, 402, 123495. [CrossRef] [PubMed] | spa |
dcterms.references | Borba, F.H.; Pellenz, L.; Bueno, F.; Inticher, J.J.; Braun, L.; Espinoza-Quiñones, F.R.; Trigueros, D.E.G.; de Pauli, A.R.; Módenes, A.N. Pollutant Removal and Biodegradation Assessment of Tannery Effluent Treated by Conventional Fenton Oxidation Process. J. Environ. Chem. Eng. 2018, 6, 7070–7079. [CrossRef] | spa |
dcterms.references | Di Iaconi, C. Biological Treatment and Ozone Oxidation: Integration or Coupling? Bioresour. Technol. 2012, 106, 63–68. [CrossRef] | spa |
dcterms.references | Arslan-Alaton, I.; Gurses, F. Photo-Fenton-like and Photo-Fenton-like Oxidation of Procaine Penicillin G Formulation Effluent. J. Photochem. Photobiol. A Chem. 2004, 165, 165–175. [CrossRef] | spa |
dcterms.references | Vaiano, V.; Iervolino, G. Facile Method to Immobilize ZnO Particles on Glass Spheres for the Photocatalytic Treatment of Tannery Wastewater. J. Colloid Interface Sci. 2018, 518, 192–199. [CrossRef] | spa |
dcterms.references | Schrank, S.G.; José, H.J.; Moreira, R.F.P.M.; Schröder, H.F. Applicability of Fenton and H2O2/UV Reactions in the Treatment of Tannery Wastewaters. Chemosphere 2005, 60, 644–655. [CrossRef] | spa |
dcterms.references | Souza, E.A.; Cerqueira, U.M.; Silva, L.A. Comparative Study of Various Advanced Oxidation Processes for the Treatment of Tannery Wastewater. Desalination Water Treat. 2020, 181, 88–97. [CrossRef] | spa |
dcterms.references | Li, R.; Li, T.; Zhou, Q. Impact of Titanium Dioxide (TiO2 ) Modification on Its Application to Pollution Treatment—A Review. Catalysts 2020, 10, 804. [CrossRef] | spa |
dcterms.references | Assémian, A.S.; Kouassi, K.E.; Drogui, P.; Adouby, K.; Boa, D. Removal of a Persistent Dye in Aqueous Solutions by Electrocoagulation Process: Modeling and Optimization Through Response Surface Methodology. Water Air Soil Pollut. 2018, 229, 1–13. [CrossRef] | spa |
dcterms.references | Gomes, A.I.; Soares, T.F.; Silva, T.F.C.V.; Boaventura, R.A.R.; Vilar, V.J.P. Ozone-Driven Processes for mature Urban Landfill Leachate Treatment: Organic Matter Degradation, Biodegradability Enhancement and Treatment Costs for Different Reactors Configuration. Sci. Total. Environ. 2020, 724, 138083. [CrossRef] | spa |
dcterms.references | Rosales, A.G.; Rodríguez, C.D.; Ballen-Segura, M. Remoción de Contaminantes y Crecimiento Del Alga Scenedesmus Sp. En Aguas Residuales de Curtiembres, Comparación Entre Células Libres e Inmovilizadas. Ing. Y Cienc. 2018, 14, 11–34. [CrossRef] | spa |
dcterms.references | Zhou, L.; Zhang, W.; De Costa, Y.G.; Zhuang, W.-Q.; Yi, S. Assessing Inorganic Components of Cake Layer in A/O Membrane Bioreactor for Physical-Chemical Treated Tannery Effluent. Chemosphere 2020, 250, 126220. [CrossRef] | spa |
dcterms.references | Urbina-Suarez, N.A.; Barajas-Solano, A.F.; Zuorro, A.; Machuca, F. Advanced Oxidation Processes with Uv-H2O2 for Nitrification and Decolorization of Dyehouse Wastewater. Chem. Eng. Trans. 2022, 95, 235–240. [CrossRef] | spa |
dcterms.references | Tolkou, A.K.; Katsoyiannis, I.A.; Zouboulis, A.I. Removal of Arsenic, Chromium and Uranium from Water Sources by Novel Nanostructured Materials Including Graphene-Based Modified Adsorbents: A Mini Review of Recent Developments. Appl. Sci. 2020, 10, 3241. [CrossRef] | spa |
dcterms.references | Selvan, S.T.; Velramar, B.; Ramamurthy, D.; Balasundaram, S.; Sivamani, K. Pilot Scale Wastewater Treatment, CO2 Sequestration and Lipid Production Using Microalga, Neochloris aquatica RDS02. Int. J. Phytoremed. 2020, 22, 1462–1479. [CrossRef] | spa |
dcterms.references | Katsoyiannis, I.A.; Xanthopoulou, M.; Zouboulis, A.I. Cr(VI) Femoval from Ground Waters by Ferrous Iron Redox-Assisted Coagulation in a Continuous Treatment Unit Comprising a Plug Flow Pipe Reactor and Downflow Sand Filtration. Appl. Sci. 2020, 10, 802. [CrossRef] | spa |
dcterms.references | Korpe, S.; Rao, P.V. Application of Advanced Oxidation Processes and Cavitation Techniques for Treatment of Tannery Wastewater—A Review. J. Environ. Chem. Eng. 2021, 9, 105234. [CrossRef] | spa |
dcterms.references | Iqbal, M.; Muneer, M.; Hussain, S.; Parveen, B.; Javed, M.; Rehman, H.; Waqas, M.; Abid, M.A. Using Combined UV and H2O2 Treatments to Reduce Tannery Wastewater Pollution Load. Pol. J. Environ. Stud. 2019, 28, 3207–3213. [CrossRef] | spa |
dcterms.references | Guan, Y.-H.; Chen, J.; Chen, L.-J.; Jiang, X.-X.; Fu, Q. Comparison of UV/H2O2 , UV/PMS, and UV/PDS in Destruction of Different Reactivity Compounds and Formation of Bromate and Chlorate. Front. Chem. 2020, 8, 581198. [CrossRef] | spa |
dcterms.references | Goutam, S.P.; Saxena, G.; Singh, V.; Yadav, A.K.; Bharagava, R.N.; Thapa, K.B. Green Synthesis of TiO2 Nanoparticles Using Leaf Extract of Jatropha curcas L. for Photocatalytic Degradation of Tannery Wastewater. Chem. Eng. J. 2018, 336, 386–396. [CrossRef] | spa |
dcterms.references | Wang, J.; Song, M.; Chen, B.; Wang, L.; Zhu, R. Effects of pH and H2O2 on Ammonia, Nitrite, and Nitrate Transformations during UV254nm Irradiation: Implications to Nitrogen Removal and Analysis. Chemosphere 2017, 184, 1003–1011. [CrossRef] | spa |
dcterms.references | Shu, H.-Y.; Chang, M.-C. Decolorization and Mineralization of a Phthalocyanine dye C.I. Direct Blue 199 Using UV/H2O2 Process. J. Hazard. Mater. 2005, 125, 96–101. [CrossRef] [PubMed] | spa |
dcterms.references | Rajagopal, S.; Paramasivam, B.; Muniyasamy, K. Photocatalytic Removal of Cationic and Anionic Dyes in the Textile Wastewater by H2O2 Assisted TiO2 and Micro-Cellulose Composites. Sep. Purif. Technol. 2020, 252, 117444. [CrossRef] | spa |
dcterms.references | Farzanehsa, M.; Vaughan, L.C.; Zamyadi, A.; Khan, S.J. Comparison of UV-Cl and UV-H2O2 Advanced Oxidation Processes in the Degradation of Contaminants from Water and Wastewater: A Review. Water Environ. J. 2023, 37, 1–11. [CrossRef] | spa |
dcterms.references | . Nidheesh, P.V.; Couras, C.; Karim, A.V.; Nadais, H. A Review of Integrated Advanced Oxidation Processes and Biological Processes for Organic Pollutant Removal. Chem. Eng. Commun. 2021, 209, 390–432. [CrossRef] | spa |
dcterms.references | Saranya, D.; Shanthakumar, S. An Integrated Approach for Tannery Effluent Treatment with Ozonation and Phycoremediation: A Feasibility Study. Environ. Res. 2020, 183, 109163. [CrossRef] | spa |
dcterms.references | Hussain, Z.; Arslan, M.; Shabir, G.; Malik, M.H.; Mohsin, M.; Iqbal, S.; Afzal, M. Remediation of Textile Bleaching Effluent by Bacterial Augmented Horizontal Flow and Vertical Flow Constructed Wetlands: A Comparison at Pilot Scale. Sci. Total. Environ. 2019, 685, 370–379. [CrossRef] [PubMed] | spa |
dcterms.references | Sauer, T.P.; Casaril, L.; Oberziner, A.L.B.; José, H.J.; Moreira, R.d.F.P.M. Advanced Oxidation Processes Applied to Tannery Wastewater Containing Direct Black 38—Elimination and Degradation Kinetics. J. Hazard. Mater. 2006, 135, 274–279. [CrossRef] [PubMed] | spa |
dcterms.references | Mahamuni, N.N.; Adewuyi, Y.G. Advanced Oxidation Processes (AOPs) Involving Ultrasound for Waste Water Treatment: A Review with Emphasis on Cost Estimation. Ultrason. Sonochem. 2010, 17, 990–1003. [CrossRef] | spa |
dcterms.references | Saravanathamizhan, R.; Perarasu, V.R.; Dhandapani, B. Advanced Oxidation Process for Effluent Treatment in Textile, Pharmaceutical, and Tannery Industries. In Photocatalytic Degradation of Dyes: Current Trends and Future Perspectives; Elsevier: Amsterdam, The Netherlands, 2021; pp. 719–745. [CrossRef] | spa |
dcterms.references | Khuzwayo, Z.; Chirwa, E.M.N. Analysis of Catalyst Photo-Oxidation Selectivity in the Degradation of Polyorganochlorinated Pollutants in Batch Systems Using UV and UV/TiO2 . S. Afr. J. Chem. Eng. 2017, 23, 17–25. [CrossRef] | spa |
dcterms.references | Josué, T.G.; Almeida, L.N.B.; Lopes, M.F.; Santos, O.A.A.; Lenzi, G.G. Cr (VI) Reduction by Photocatalyic Process: Nb2O5 an Alternative Catalyst. J. Environ. Manag. 2020, 268, 110711. [CrossRef] | spa |
dc.identifier.doi | https://doi.org/10.3390/ pr11113091 | |
dc.relation.citationedition | Vol.11 (2023) | spa |
dc.relation.citationendpage | 15 | spa |
dc.relation.citationissue | (2023) | spa |
dc.relation.citationstartpage | 1 | spa |
dc.relation.citationvolume | 11 | spa |
dc.relation.ispartofjournal | Processes | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.subject.proposal | tannery wastewater | eng |
dc.subject.proposal | advanced oxidation processes | eng |
dc.subject.proposal | COD | eng |
dc.subject.proposal | nitrification | eng |
dc.subject.proposal | photocatalysis | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Ambiente y Vida - GIAV [124]
Excepto si se señala otra cosa, la licencia del ítem se describe como © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).