Show simple item record

dc.contributor.authorUrbina-Suarez, Nestor Andres
dc.contributor.authorLópez Barrera, German Luciano
dc.contributor.authorGarcía-Martinez, Janet
dc.contributor.authorBarajas Solano, andres F
dc.contributor.authorMachuca-Martínez, Fiderman
dc.contributor.authorZUORRO, Antonio
dc.date.accessioned2024-03-20T14:20:28Z
dc.date.available2024-03-20T14:20:28Z
dc.date.issued2023-10-27
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/6739
dc.description.abstractIn this work, a UV/H2O2 system in real tannery wastewater was evaluated by an experimental design with optimal stage 2-level I-optimal reaction surface using Design Expert software to analyze the effects of temperature, pH, UV lamp power (W), and H2O2 concentration on COD removal and nitrification. It was found that pH and temperature were the variables that affected the process the most. It was found that an acidic pH of 4.5–5.5 and temperatures between 50 and 70 ◦C favored improved COD and ammonium oxidation. The process conditions—temperature 54.6 ◦C, pH 4, pW-UV 60 W and hydrogen peroxide 0.5—were confirmed in the next phase of the study using a one-way statistical analysis ANOVA. Under these conditions, the nitrite removal rate was 98.4%, ammonium 94.53%, chromium 92.3%, chlorides 62.4%, BOD 67.4%, COD 44.5%, and color 48%.eng
dc.format.extent15 Páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherProcessesspa
dc.relation.ispartofUrbina-Suarez, N.A.; López-Barrera, G.L.; García-Martínez, J.B.; Barajas-Solano, A.F.; MachucaMartínez, F.; Zuorro, A. Enhanced UV/H2O2 System for the Oxidation of Organic Contaminants and Ammonia Transformation from Tannery Effluents. Processes 2023, 11, 3091. https://doi.org/10.3390/ pr11113091
dc.rights© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).eng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://www.mdpi.com/2227-9717/11/11/3091spa
dc.titleEnhanced UV/H2O2 System for the Oxidation of Organic Contaminants and Ammonia Transformation from Tannery Effluentseng
dc.typeArtículo de revistaspa
dcterms.referencesSivagami, K.; Sakthivel, K.P.; Nambi, I.M. Advanced Oxidation Processes for the Treatment of Tannery Wastewater. J. Environ. Chem. Eng. 2018, 6, 3656–3663. [CrossRef]spa
dcterms.referencesUrbina-Suarez, N.A.; Machuca-Martínez, F.; Barajas-Solano, A.F. Advanced Oxidation Processes and Biotechnological Alternatives for the Treatment of Tannery Wastewater. Molecules 2021, 26, 3222. [CrossRef]spa
dcterms.referencesHansen, É.; de Aquim, P.M.; Hansen, A.W.; Cardoso, J.K.; Ziulkoski, A.L.; Gutterres, M. Impact of Post-Tanning Chemicals on the Pollution Load of Tannery Wastewater. J. Environ. Manag. 2020, 269, 110787. [CrossRef]spa
dcterms.referencesChhikara, S.; Hooda, A.; Rana, L.; Dhankhar, R. Chromium (VI) Biosorption by Immobilized Aspergillus Niger in Continuous Flow System with Special Reference to FTIR Analysis. J. Environ. Biol. 2010, 31, 561–566.spa
dcterms.referencesDaneshvar, E.; Zarrinmehr, M.J.; Kousha, M.; Hashtjin, A.M.; Saratale, G.D.; Maiti, A.; Vithanage, M.; Bhatnagar, A. Hexavalent Chromium Removal from Water by Microalgal-Based Materials: Adsorption, Desorption and Recovery Studies. Bioresour. Technol. 2019, 293, 122064. [CrossRef]spa
dcterms.referencesZhao, J.; Wu, Q.; Tang, Y.; Zhou, J.; Guo, H. Tannery Wastewater Treatment: Conventional and Promising Processes, an Updated 20-Year Review. J. Leather Sci. Eng. 2022, 4, 1–22. [CrossRef]spa
dcterms.referencesAchouri, O.; Panico, A.; Bencheikh-Lehocine, M.; Derbal, K.; Pirozzi, F. Effect of Chemical Coagulation Pretreatment on Anaerobic Digestion of Tannery Wastewater. J. Environ. Eng. 2017, 143, 04017039. [CrossRef]spa
dcterms.referencesAchouri, O.; Panico, A.; Bencheikh-Lehocine, M.; Derbal, K.; Pirozzi, F. Effect of Chemical Coagulation Pretreatment on Anaerobic Digestion of Tannery Wastewater. J. Environ. Eng. 2017, 143, 04017039. [CrossRef]spa
dcterms.referencesLofrano, G.; Meriç, S.; Zengin, G.E.; Orhon, D. Chemical and Biological Treatment Technologies for Leather Tannery Chemicals and Wastewaters: A Review. Sci. Total. Environ. 2013, 461–462, 265–281. [CrossRef]spa
dcterms.referencesUrbina-Suarez, N.A.; Ayala-González, D.D.; Rivera-Amaya, J.D.; Barajas-Solano, A.F.; Machuca-Martínez, F. Evaluation of the Light/Dark Cycle and Concentration of Tannery Wastewater in the Production of Biomass and Metabolites of Industrial Interest from Microalgae and Cyanobacteria. Water 2022, 14, 346. [CrossRef]spa
dcterms.referencesHaydar, S.; Aziz, J.; Saeed, M. Biological Treatment of Tannery Wastewater Using Activated Sludge Process. Pak. J. Eng. Appl. Sci. 2007, 1, 61–66.spa
dcterms.referencesGracePavithra, K.; Jaikumar, V.; Kumar, P.S.; Sundar Rajan, P.S. A Review on Cleaner Strategies for Chromium Industrial Wastewater: Present Research and Future Perspective. J. Clean. Prod. 2019, 228, 580–593. [CrossRef]spa
dcterms.referencesUrbina-Suarez, N.A.; Rivera-Caicedo, C.; González-Delgado, D.; Barajas-Solano, A.F.; Machuca-Martínez, F. BicarbonateHydrogen Peroxide System for Treating Dyeing Wastewater: Degradation of Organic Pollutants and Color Removal. Toxics 2023, 11, 366. [CrossRef]spa
dcterms.referencesKorpe, S.A.; Landge, V.; Hakke, V.S.; Rao, P.V.; Sonawane, S.H.; Sonawane, S.S. Advanced Oxidation Processes for Tannery Industry Wastewater Treatment. In Novel Approaches towards Wastewater Treatment and Resource Recovery Technologies; Elsevier: Amsterdam, The Netherlands, 2022; pp. 253–276. [CrossRef]spa
dcterms.referencesJessieleena, A.A.; Priyanka, M.; Saravanakumar, M.P. Comparative Study of Fenton, Fe2+/NaOCl and Fe2+/(NH4 )2S2O8 on Tannery Sludge Dewaterability, Degradability of Organics and Leachability of Chromium. J. Hazard. Mater. 2021, 402, 123495. [CrossRef] [PubMed]spa
dcterms.referencesJessieleena, A.A.; Priyanka, M.; Saravanakumar, M.P. Comparative Study of Fenton, Fe2+/NaOCl and Fe2+/(NH4 )2S2O8 on Tannery Sludge Dewaterability, Degradability of Organics and Leachability of Chromium. J. Hazard. Mater. 2021, 402, 123495. [CrossRef] [PubMed]spa
dcterms.referencesBorba, F.H.; Pellenz, L.; Bueno, F.; Inticher, J.J.; Braun, L.; Espinoza-Quiñones, F.R.; Trigueros, D.E.G.; de Pauli, A.R.; Módenes, A.N. Pollutant Removal and Biodegradation Assessment of Tannery Effluent Treated by Conventional Fenton Oxidation Process. J. Environ. Chem. Eng. 2018, 6, 7070–7079. [CrossRef]spa
dcterms.referencesDi Iaconi, C. Biological Treatment and Ozone Oxidation: Integration or Coupling? Bioresour. Technol. 2012, 106, 63–68. [CrossRef]spa
dcterms.referencesArslan-Alaton, I.; Gurses, F. Photo-Fenton-like and Photo-Fenton-like Oxidation of Procaine Penicillin G Formulation Effluent. J. Photochem. Photobiol. A Chem. 2004, 165, 165–175. [CrossRef]spa
dcterms.referencesVaiano, V.; Iervolino, G. Facile Method to Immobilize ZnO Particles on Glass Spheres for the Photocatalytic Treatment of Tannery Wastewater. J. Colloid Interface Sci. 2018, 518, 192–199. [CrossRef]spa
dcterms.referencesSchrank, S.G.; José, H.J.; Moreira, R.F.P.M.; Schröder, H.F. Applicability of Fenton and H2O2/UV Reactions in the Treatment of Tannery Wastewaters. Chemosphere 2005, 60, 644–655. [CrossRef]spa
dcterms.referencesSouza, E.A.; Cerqueira, U.M.; Silva, L.A. Comparative Study of Various Advanced Oxidation Processes for the Treatment of Tannery Wastewater. Desalination Water Treat. 2020, 181, 88–97. [CrossRef]spa
dcterms.referencesLi, R.; Li, T.; Zhou, Q. Impact of Titanium Dioxide (TiO2 ) Modification on Its Application to Pollution Treatment—A Review. Catalysts 2020, 10, 804. [CrossRef]spa
dcterms.referencesAssémian, A.S.; Kouassi, K.E.; Drogui, P.; Adouby, K.; Boa, D. Removal of a Persistent Dye in Aqueous Solutions by Electrocoagulation Process: Modeling and Optimization Through Response Surface Methodology. Water Air Soil Pollut. 2018, 229, 1–13. [CrossRef]spa
dcterms.referencesGomes, A.I.; Soares, T.F.; Silva, T.F.C.V.; Boaventura, R.A.R.; Vilar, V.J.P. Ozone-Driven Processes for mature Urban Landfill Leachate Treatment: Organic Matter Degradation, Biodegradability Enhancement and Treatment Costs for Different Reactors Configuration. Sci. Total. Environ. 2020, 724, 138083. [CrossRef]spa
dcterms.referencesRosales, A.G.; Rodríguez, C.D.; Ballen-Segura, M. Remoción de Contaminantes y Crecimiento Del Alga Scenedesmus Sp. En Aguas Residuales de Curtiembres, Comparación Entre Células Libres e Inmovilizadas. Ing. Y Cienc. 2018, 14, 11–34. [CrossRef]spa
dcterms.referencesZhou, L.; Zhang, W.; De Costa, Y.G.; Zhuang, W.-Q.; Yi, S. Assessing Inorganic Components of Cake Layer in A/O Membrane Bioreactor for Physical-Chemical Treated Tannery Effluent. Chemosphere 2020, 250, 126220. [CrossRef]spa
dcterms.referencesUrbina-Suarez, N.A.; Barajas-Solano, A.F.; Zuorro, A.; Machuca, F. Advanced Oxidation Processes with Uv-H2O2 for Nitrification and Decolorization of Dyehouse Wastewater. Chem. Eng. Trans. 2022, 95, 235–240. [CrossRef]spa
dcterms.referencesTolkou, A.K.; Katsoyiannis, I.A.; Zouboulis, A.I. Removal of Arsenic, Chromium and Uranium from Water Sources by Novel Nanostructured Materials Including Graphene-Based Modified Adsorbents: A Mini Review of Recent Developments. Appl. Sci. 2020, 10, 3241. [CrossRef]spa
dcterms.referencesSelvan, S.T.; Velramar, B.; Ramamurthy, D.; Balasundaram, S.; Sivamani, K. Pilot Scale Wastewater Treatment, CO2 Sequestration and Lipid Production Using Microalga, Neochloris aquatica RDS02. Int. J. Phytoremed. 2020, 22, 1462–1479. [CrossRef]spa
dcterms.referencesKatsoyiannis, I.A.; Xanthopoulou, M.; Zouboulis, A.I. Cr(VI) Femoval from Ground Waters by Ferrous Iron Redox-Assisted Coagulation in a Continuous Treatment Unit Comprising a Plug Flow Pipe Reactor and Downflow Sand Filtration. Appl. Sci. 2020, 10, 802. [CrossRef]spa
dcterms.referencesKorpe, S.; Rao, P.V. Application of Advanced Oxidation Processes and Cavitation Techniques for Treatment of Tannery Wastewater—A Review. J. Environ. Chem. Eng. 2021, 9, 105234. [CrossRef]spa
dcterms.referencesIqbal, M.; Muneer, M.; Hussain, S.; Parveen, B.; Javed, M.; Rehman, H.; Waqas, M.; Abid, M.A. Using Combined UV and H2O2 Treatments to Reduce Tannery Wastewater Pollution Load. Pol. J. Environ. Stud. 2019, 28, 3207–3213. [CrossRef]spa
dcterms.referencesGuan, Y.-H.; Chen, J.; Chen, L.-J.; Jiang, X.-X.; Fu, Q. Comparison of UV/H2O2 , UV/PMS, and UV/PDS in Destruction of Different Reactivity Compounds and Formation of Bromate and Chlorate. Front. Chem. 2020, 8, 581198. [CrossRef]spa
dcterms.referencesGoutam, S.P.; Saxena, G.; Singh, V.; Yadav, A.K.; Bharagava, R.N.; Thapa, K.B. Green Synthesis of TiO2 Nanoparticles Using Leaf Extract of Jatropha curcas L. for Photocatalytic Degradation of Tannery Wastewater. Chem. Eng. J. 2018, 336, 386–396. [CrossRef]spa
dcterms.referencesWang, J.; Song, M.; Chen, B.; Wang, L.; Zhu, R. Effects of pH and H2O2 on Ammonia, Nitrite, and Nitrate Transformations during UV254nm Irradiation: Implications to Nitrogen Removal and Analysis. Chemosphere 2017, 184, 1003–1011. [CrossRef]spa
dcterms.referencesShu, H.-Y.; Chang, M.-C. Decolorization and Mineralization of a Phthalocyanine dye C.I. Direct Blue 199 Using UV/H2O2 Process. J. Hazard. Mater. 2005, 125, 96–101. [CrossRef] [PubMed]spa
dcterms.referencesRajagopal, S.; Paramasivam, B.; Muniyasamy, K. Photocatalytic Removal of Cationic and Anionic Dyes in the Textile Wastewater by H2O2 Assisted TiO2 and Micro-Cellulose Composites. Sep. Purif. Technol. 2020, 252, 117444. [CrossRef]spa
dcterms.referencesFarzanehsa, M.; Vaughan, L.C.; Zamyadi, A.; Khan, S.J. Comparison of UV-Cl and UV-H2O2 Advanced Oxidation Processes in the Degradation of Contaminants from Water and Wastewater: A Review. Water Environ. J. 2023, 37, 1–11. [CrossRef]spa
dcterms.references. Nidheesh, P.V.; Couras, C.; Karim, A.V.; Nadais, H. A Review of Integrated Advanced Oxidation Processes and Biological Processes for Organic Pollutant Removal. Chem. Eng. Commun. 2021, 209, 390–432. [CrossRef]spa
dcterms.referencesSaranya, D.; Shanthakumar, S. An Integrated Approach for Tannery Effluent Treatment with Ozonation and Phycoremediation: A Feasibility Study. Environ. Res. 2020, 183, 109163. [CrossRef]spa
dcterms.referencesHussain, Z.; Arslan, M.; Shabir, G.; Malik, M.H.; Mohsin, M.; Iqbal, S.; Afzal, M. Remediation of Textile Bleaching Effluent by Bacterial Augmented Horizontal Flow and Vertical Flow Constructed Wetlands: A Comparison at Pilot Scale. Sci. Total. Environ. 2019, 685, 370–379. [CrossRef] [PubMed]spa
dcterms.referencesSauer, T.P.; Casaril, L.; Oberziner, A.L.B.; José, H.J.; Moreira, R.d.F.P.M. Advanced Oxidation Processes Applied to Tannery Wastewater Containing Direct Black 38—Elimination and Degradation Kinetics. J. Hazard. Mater. 2006, 135, 274–279. [CrossRef] [PubMed]spa
dcterms.referencesMahamuni, N.N.; Adewuyi, Y.G. Advanced Oxidation Processes (AOPs) Involving Ultrasound for Waste Water Treatment: A Review with Emphasis on Cost Estimation. Ultrason. Sonochem. 2010, 17, 990–1003. [CrossRef]spa
dcterms.referencesSaravanathamizhan, R.; Perarasu, V.R.; Dhandapani, B. Advanced Oxidation Process for Effluent Treatment in Textile, Pharmaceutical, and Tannery Industries. In Photocatalytic Degradation of Dyes: Current Trends and Future Perspectives; Elsevier: Amsterdam, The Netherlands, 2021; pp. 719–745. [CrossRef]spa
dcterms.referencesKhuzwayo, Z.; Chirwa, E.M.N. Analysis of Catalyst Photo-Oxidation Selectivity in the Degradation of Polyorganochlorinated Pollutants in Batch Systems Using UV and UV/TiO2 . S. Afr. J. Chem. Eng. 2017, 23, 17–25. [CrossRef]spa
dcterms.referencesJosué, T.G.; Almeida, L.N.B.; Lopes, M.F.; Santos, O.A.A.; Lenzi, G.G. Cr (VI) Reduction by Photocatalyic Process: Nb2O5 an Alternative Catalyst. J. Environ. Manag. 2020, 268, 110711. [CrossRef]spa
dc.identifier.doihttps://doi.org/10.3390/ pr11113091
dc.relation.citationeditionVol.11 (2023)spa
dc.relation.citationendpage15spa
dc.relation.citationissue(2023)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume11spa
dc.relation.ispartofjournalProcessesspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposaltannery wastewatereng
dc.subject.proposaladvanced oxidation processeseng
dc.subject.proposalCODeng
dc.subject.proposalnitrificationeng
dc.subject.proposalphotocatalysiseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).
Except where otherwise noted, this item's license is described as © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).