Show simple item record

dc.contributor.authorCely Calixto, Nelson Javier
dc.contributor.authorGalvis-Castaño, Alberto
dc.contributor.authorCarrillo Soto, Gustavo Adolfo
dc.date.accessioned2024-03-19T16:49:34Z
dc.date.available2024-03-19T16:49:34Z
dc.date.issued2023-11-17
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/6738
dc.description.abstractThis study proposes a new empirical model for estimating local scour along the base of longitudinal training walls for granular riverbeds. The model’s performance was rigorously assessed through experiments conducted in an open-channel flume, encompassing variations in granulometric characteristics, slope, and flow rates. The investigation involved a comparative analysis of six commonly employed equations for scour estimation. The results consistently demonstrated a tendency of the selected equations to overestimate scour depth within the longitudinal structures. In contrast, the new proposed equation considers factors such as the well-graded granular bedding represented by the Coefficient of uniformity (Cu) and the embedment of the longitudinal wall. This allows for a more robust identification of the scour behavior of longitudinal walls. This research enhances our comprehension of local scour in riverbeds. It provides engineers and researchers with a valuable tool for more accurate predictions, thereby contributing to the improved design and maintenance of river environment structures.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherBommanna Krishnappanspa
dc.relation.ispartof: Cely Calixto, N.J.; Galvis Castaño, A.; Carrillo Soto, G.A. Evaluation of Local Scour along the Base of Longitudinal Training Walls. Water 2023, 15, 4001. https:// doi.org/10.3390/w15224001
dc.rights: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).eng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcefile:///C:/Users/ufps/Downloads/Evaluation_of_Local_Scour_along_the_Base_of_Longit.pdfspa
dc.titleEvaluation of Local Scour along the Base of Longitudinal Training Wallseng
dc.typeArtículo de revistaspa
dcterms.referencesCzapiga, M.J.; Blom, A.; Viparelli, E. Efficacy of Longitudinal Training Walls to Mitigate Riverbed Erosion. Water Resour. Res. 2022, 58, e2022WR033072. [CrossRef]spa
dcterms.referencesYan, G.; Cheng, H.; Jiang, Z.; Teng, L.; Tang, M.; Shi, T.; Jiang, Y.; Yang, G.; Zhou, Q. Recognition of Fluvial Bank Erosion Along the Main Stream of the Yangtze River. Engineering 2022, 19, 50–61. [CrossRef]spa
dcterms.referencesSohrabi, M.; Keshavarzi, A.; Javan, M. Impact of Bed Sill Shapes on Scour Protection in River Bed and Banks. Int. J. River Basin Manag. 2019, 17, 277–287. [CrossRef]spa
dcterms.referencesShahriar, A.R.; Ortiz, A.C.; Montoya, B.M.; Gabr, M.A. Bridge Pier Scour: An Overview of Factors Affecting the Phenomenon and Comparative Evaluation of Selected Models. Transp. Geotech. 2021, 28, 100549. [CrossRef]spa
dcterms.referencesQi, H.; Yuan, T.; Zhao, F.; Chen, G.; Tian, W.; Li, J. Local Scour Reduction around Cylindrical Piers Using Permeable Collars in Clear Water. Water 2023, 15, 897. [CrossRef]spa
dcterms.referencesLe, T.B.; Crosato, A.; Uijttewaal, W.S.J. Long-Term Morphological Developments of River Channels Separated by a Longitudinal Training Wall. Adv. Water Resour. 2018, 113, 73–85. [CrossRef]spa
dcterms.referencesToapaxi, J.; Galiano, L.; Castro, M.; Hidalgo, X.; Valencia, N. Análisis de La Socavación En Cauces Naturales. Rev. Politec. 2015, 35, 1–11.spa
dcterms.referencesKokusho, T.; Hara, T.; Hiraoka, R. Undrained Shear Strength of Granular Soils with Different Particle Gradations. J. Geotech. Geoenvironmental Eng. 2004, 130, 621–629. [CrossRef]spa
dcterms.referencesBiron, P.M.; Robson, C.; Lapointe, M.F.; Gaskin, S.J. Three-Dimensional Flow Dynamics around Deflectors. River Res. Appl. 2005, 21, 961–975. [CrossRef]spa
dcterms.referencesIstanbulluoglu, E.; Tarboton, D.G.; Pack, R.T.; Luce, C. A Sediment Transport Model for Incision of Gullies on Steep Topography. Water Resour. Res. 2003, 39, 4. [CrossRef]spa
dcterms.referencesAttal, M.; Lavé, J. Pebble Abrasion during Fluvial Transport: Experimental Results and Implications for the Evolution of the Sediment Load along Rivers. J. Geophys. Res. 2009, 114, F04023. [CrossRef]spa
dcterms.referencesBarbosa Gil, S. Metodología Para Calcular La Profundidad de Socavación General En Ríos de Montaña (Lecho de Gravas). Ph.D. Thesis, Universidad Nacional de Colombia, Bogota, Colombia, 2013.spa
dcterms.referencesCañas, R. Estudio de La Socavación Local En Pilas Circulares de Puentes En Lechos No Cohesivos Con Modelación Física En Laboratorio. Master’s Thesis, Escuela Colombiana de Ingenieria Julio Garavito, Bogota, Colombia, 2018.spa
dcterms.referencesKhosronejad, A.; Diplas, P.; Angelidis, D.; Zhang, Z.; Heydari, N.; Sotiropoulos, F. Scour Depth Prediction at the Base of Longitudinal Walls: A Combined Experimental, Numerical, and Field Study. Environ. Fluid Mech. 2020, 20, 459–478. [CrossRef]spa
dcterms.referencesTaha, N.; El-Feky, M.M.; El-Saiad, A.A.; Fathy, I. Numerical Investigation of Scour Characteristics Downstream of Blocked Culverts. Alex. Eng. J. 2020, 59, 3503–3513. [CrossRef]spa
dcterms.referencesJohnson, P.A.; Clopper, P.E.; Zevenbergen, L.W.; Lagasse, P.F. Quantifying Uncertainty and Reliability in Bridge Scour Estimations. J. Hydraul. Eng. 2015, 141, 04015013. [CrossRef]spa
dcterms.referencesLacey, G. Stable channels in alluvium (includes appendices). Minutes Proc. Inst. Civ. Eng. 1930, 229, 259–292. [CrossRef]spa
dcterms.referencesBlench, T. A new theory of turbulent flow in liquids of small viscosity. (in abstract form). J. Inst. Civ. Eng. 1939, 11, 611–612. [CrossRef]spa
dcterms.referencesLischtvan, L.; Lebediev, V. Gidrologia I Gidraulika v Mostovom Doroshnom, Straitielvie. In Hydrology and Hydraulics in Bridge and Road Building; Gidrometeoizdat: St. Petersburg, Russian, 1959.spa
dcterms.referencesLaursen, E.M.; Toch, A. Bulletin no Scour around Bridge Piers and Abutments Iowa Institute of Hydraulic Research in Cooperation with Thl Iowa State Highway Commission and the Bureau of Public Roads; Iowa Highway Research Board: Ames, IA, USA, 1956.spa
dcterms.referencesStraub, L.G. Report of Committee on Dynamics of Streams, 1937–1938. Trans. Am. Geophys. Union 1938, 19, 349. [CrossRef]spa
dcterms.referencesKomura, S. Equilibrium Depth of Scour in Long Constrictions. J. Hydraul. Div. 1966, 92, 17–37. [CrossRef]spa
dcterms.referencesBorges, M. Socavacion al Pie de Muros Longitudinales. Bachelor’s Thesis, Universidad de Merida, Merida, Mexico, 2008spa
dcterms.referencesRichardson, E.V.; Simons, D.B.; Julien, P.Y. Highways in the River Environment: Participant Notebook; Federal Highway Administration: Washington, DC, USA, 1990.spa
dcterms.referencesMelville, B.W. Pier and Abutment Scour: Integrated Approach. J. Hydraul. Eng. 1997, 123, 125–136. [CrossRef]spa
dcterms.referencesFroehlich, D.C. Local Scour at Bridge Abutments. In Proceedings of the 1989 National Conference on Hydraulic Engineering, ASCE, New Orleans, LA, USA, 14 August 1989; pp. 13–18.spa
dcterms.referencesMelville, B.W. Local Scour at Bridge Abutments. J. Hydraul. Eng. 1992, 118, 615–631. [CrossRef]spa
dcterms.referencesMussetter, B.; Stoliker, D.; Foglesong, R.; Alsop, T.; Aguirre, F.; Stone, H.; Dodge, C.; Mortenson, J.; Carroll, R. Sediment and Erosion Design Guide Sscafca Sediment and Erosion Design Guide. 2008. Available online: https://sscafca.org/development/ documents/sediment_design_guide/Sediment%20Design%20Guide%2012-30-08.pdf (accessed on 7 November 2023).spa
dcterms.referencesLook, B.G. Handbook of Geotechnical Investigation and Design Tables; Taylor & Francis: Oxfordshire, UK, 2007; ISBN 9780429224379.spa
dcterms.referencesChachereau, Y.; Chanson, H. Free-Surface Fluctuations and Turbulence in Hydraulic Jumps. Exp. Therm. Fluid Sci. 2011, 35, 896–909. [CrossRef]spa
dcterms.referencesGuzmán, R.; Bezada, M.; Rodríguez-Santalla, I. Granulometric Characterization of Sediments in the Anastomosed System of the Apure River Venezuela. J. S. Am. Earth Sci. 2021, 109, 103274. [CrossRef]spa
dcterms.referencesKhan, U.A.; Valentino, R. Investigating the Granulometric Distribution of Fluvial Sediments through the Hybrid Technique: Case Study of the Baganza River (Italy). Water 2022, 14, 1511. [CrossRef]spa
dcterms.referencesPereira, L.M. Erosión Local En Estribos. Master’s Thesis, Universidad de los Andes, Merida, Mexico, 1995spa
dcterms.referencesGonzalez, J.R.P.; Escobar-Vargas, J.; Vargas-Luna, A.; Castiblanco, S.; Trujillo, D.; Guatame, A.C.; Corzo, G.; Santos, G.; Perez, L.A. Hydroinformatic Tools and Their Potential in the Search for Missing Persons in Rivers. Forensic Sci. Int. 2022, 341, 111478. [CrossRef] [PubMed]spa
dcterms.referencesOliveto, G.; Hager, W.H. Temporal Evolution of Clear-Water Pier and Abutment Scour. J. Hydraul. Eng. 2002, 128, 811–820. [CrossRef]spa
dcterms.referencesDi Pietro, P.; Mahajan, R.R. Erosion Control Solutions with Case Studies; Springer: Berlin/Heidelberg, Germany, 2022; pp. 71–94spa
dcterms.referencesRadice, A.; Davari, V. Roughening Elements as Abutment Scour Countermeasures. J. Hydraul. Eng. 2014, 140, 06014014. [CrossRef]spa
dcterms.referencesAguirre-Pe, J.; Olivero, M.L.; Moncada, A.T. Particle Densimetric Froude Number for Estimating Sediment Transport. J. Hydraul. Eng. 2003, 129, 428–437. [CrossRef]spa
dc.identifier.doihttps:// doi.org/10.3390/w15224001
dc.relation.citationeditionVol.15 (2023)spa
dc.relation.citationendpage13spa
dc.relation.citationissue(2023)spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume15spa
dc.relation.ispartofjournalWaterspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalriver bank protectioneng
dc.subject.proposallongitudinal training walls;eng
dc.subject.proposalsediment transporteng
dc.subject.proposalscour depth estimationeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).
Except where otherwise noted, this item's license is described as : © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).