Evaluation of Local Scour along the Base of Longitudinal Training Walls
dc.contributor.author | Cely Calixto, Nelson Javier | |
dc.contributor.author | Galvis-Castaño, Alberto | |
dc.contributor.author | Carrillo Soto, Gustavo Adolfo | |
dc.date.accessioned | 2024-03-19T16:49:34Z | |
dc.date.available | 2024-03-19T16:49:34Z | |
dc.date.issued | 2023-11-17 | |
dc.identifier.uri | https://repositorio.ufps.edu.co/handle/ufps/6738 | |
dc.description.abstract | This study proposes a new empirical model for estimating local scour along the base of longitudinal training walls for granular riverbeds. The model’s performance was rigorously assessed through experiments conducted in an open-channel flume, encompassing variations in granulometric characteristics, slope, and flow rates. The investigation involved a comparative analysis of six commonly employed equations for scour estimation. The results consistently demonstrated a tendency of the selected equations to overestimate scour depth within the longitudinal structures. In contrast, the new proposed equation considers factors such as the well-graded granular bedding represented by the Coefficient of uniformity (Cu) and the embedment of the longitudinal wall. This allows for a more robust identification of the scour behavior of longitudinal walls. This research enhances our comprehension of local scour in riverbeds. It provides engineers and researchers with a valuable tool for more accurate predictions, thereby contributing to the improved design and maintenance of river environment structures. | eng |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Bommanna Krishnappan | spa |
dc.relation.ispartof | : Cely Calixto, N.J.; Galvis Castaño, A.; Carrillo Soto, G.A. Evaluation of Local Scour along the Base of Longitudinal Training Walls. Water 2023, 15, 4001. https:// doi.org/10.3390/w15224001 | |
dc.rights | : © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). | eng |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | spa |
dc.source | file:///C:/Users/ufps/Downloads/Evaluation_of_Local_Scour_along_the_Base_of_Longit.pdf | spa |
dc.title | Evaluation of Local Scour along the Base of Longitudinal Training Walls | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Czapiga, M.J.; Blom, A.; Viparelli, E. Efficacy of Longitudinal Training Walls to Mitigate Riverbed Erosion. Water Resour. Res. 2022, 58, e2022WR033072. [CrossRef] | spa |
dcterms.references | Yan, G.; Cheng, H.; Jiang, Z.; Teng, L.; Tang, M.; Shi, T.; Jiang, Y.; Yang, G.; Zhou, Q. Recognition of Fluvial Bank Erosion Along the Main Stream of the Yangtze River. Engineering 2022, 19, 50–61. [CrossRef] | spa |
dcterms.references | Sohrabi, M.; Keshavarzi, A.; Javan, M. Impact of Bed Sill Shapes on Scour Protection in River Bed and Banks. Int. J. River Basin Manag. 2019, 17, 277–287. [CrossRef] | spa |
dcterms.references | Shahriar, A.R.; Ortiz, A.C.; Montoya, B.M.; Gabr, M.A. Bridge Pier Scour: An Overview of Factors Affecting the Phenomenon and Comparative Evaluation of Selected Models. Transp. Geotech. 2021, 28, 100549. [CrossRef] | spa |
dcterms.references | Qi, H.; Yuan, T.; Zhao, F.; Chen, G.; Tian, W.; Li, J. Local Scour Reduction around Cylindrical Piers Using Permeable Collars in Clear Water. Water 2023, 15, 897. [CrossRef] | spa |
dcterms.references | Le, T.B.; Crosato, A.; Uijttewaal, W.S.J. Long-Term Morphological Developments of River Channels Separated by a Longitudinal Training Wall. Adv. Water Resour. 2018, 113, 73–85. [CrossRef] | spa |
dcterms.references | Toapaxi, J.; Galiano, L.; Castro, M.; Hidalgo, X.; Valencia, N. Análisis de La Socavación En Cauces Naturales. Rev. Politec. 2015, 35, 1–11. | spa |
dcterms.references | Kokusho, T.; Hara, T.; Hiraoka, R. Undrained Shear Strength of Granular Soils with Different Particle Gradations. J. Geotech. Geoenvironmental Eng. 2004, 130, 621–629. [CrossRef] | spa |
dcterms.references | Biron, P.M.; Robson, C.; Lapointe, M.F.; Gaskin, S.J. Three-Dimensional Flow Dynamics around Deflectors. River Res. Appl. 2005, 21, 961–975. [CrossRef] | spa |
dcterms.references | Istanbulluoglu, E.; Tarboton, D.G.; Pack, R.T.; Luce, C. A Sediment Transport Model for Incision of Gullies on Steep Topography. Water Resour. Res. 2003, 39, 4. [CrossRef] | spa |
dcterms.references | Attal, M.; Lavé, J. Pebble Abrasion during Fluvial Transport: Experimental Results and Implications for the Evolution of the Sediment Load along Rivers. J. Geophys. Res. 2009, 114, F04023. [CrossRef] | spa |
dcterms.references | Barbosa Gil, S. Metodología Para Calcular La Profundidad de Socavación General En Ríos de Montaña (Lecho de Gravas). Ph.D. Thesis, Universidad Nacional de Colombia, Bogota, Colombia, 2013. | spa |
dcterms.references | Cañas, R. Estudio de La Socavación Local En Pilas Circulares de Puentes En Lechos No Cohesivos Con Modelación Física En Laboratorio. Master’s Thesis, Escuela Colombiana de Ingenieria Julio Garavito, Bogota, Colombia, 2018. | spa |
dcterms.references | Khosronejad, A.; Diplas, P.; Angelidis, D.; Zhang, Z.; Heydari, N.; Sotiropoulos, F. Scour Depth Prediction at the Base of Longitudinal Walls: A Combined Experimental, Numerical, and Field Study. Environ. Fluid Mech. 2020, 20, 459–478. [CrossRef] | spa |
dcterms.references | Taha, N.; El-Feky, M.M.; El-Saiad, A.A.; Fathy, I. Numerical Investigation of Scour Characteristics Downstream of Blocked Culverts. Alex. Eng. J. 2020, 59, 3503–3513. [CrossRef] | spa |
dcterms.references | Johnson, P.A.; Clopper, P.E.; Zevenbergen, L.W.; Lagasse, P.F. Quantifying Uncertainty and Reliability in Bridge Scour Estimations. J. Hydraul. Eng. 2015, 141, 04015013. [CrossRef] | spa |
dcterms.references | Lacey, G. Stable channels in alluvium (includes appendices). Minutes Proc. Inst. Civ. Eng. 1930, 229, 259–292. [CrossRef] | spa |
dcterms.references | Blench, T. A new theory of turbulent flow in liquids of small viscosity. (in abstract form). J. Inst. Civ. Eng. 1939, 11, 611–612. [CrossRef] | spa |
dcterms.references | Lischtvan, L.; Lebediev, V. Gidrologia I Gidraulika v Mostovom Doroshnom, Straitielvie. In Hydrology and Hydraulics in Bridge and Road Building; Gidrometeoizdat: St. Petersburg, Russian, 1959. | spa |
dcterms.references | Laursen, E.M.; Toch, A. Bulletin no Scour around Bridge Piers and Abutments Iowa Institute of Hydraulic Research in Cooperation with Thl Iowa State Highway Commission and the Bureau of Public Roads; Iowa Highway Research Board: Ames, IA, USA, 1956. | spa |
dcterms.references | Straub, L.G. Report of Committee on Dynamics of Streams, 1937–1938. Trans. Am. Geophys. Union 1938, 19, 349. [CrossRef] | spa |
dcterms.references | Komura, S. Equilibrium Depth of Scour in Long Constrictions. J. Hydraul. Div. 1966, 92, 17–37. [CrossRef] | spa |
dcterms.references | Borges, M. Socavacion al Pie de Muros Longitudinales. Bachelor’s Thesis, Universidad de Merida, Merida, Mexico, 2008 | spa |
dcterms.references | Richardson, E.V.; Simons, D.B.; Julien, P.Y. Highways in the River Environment: Participant Notebook; Federal Highway Administration: Washington, DC, USA, 1990. | spa |
dcterms.references | Melville, B.W. Pier and Abutment Scour: Integrated Approach. J. Hydraul. Eng. 1997, 123, 125–136. [CrossRef] | spa |
dcterms.references | Froehlich, D.C. Local Scour at Bridge Abutments. In Proceedings of the 1989 National Conference on Hydraulic Engineering, ASCE, New Orleans, LA, USA, 14 August 1989; pp. 13–18. | spa |
dcterms.references | Melville, B.W. Local Scour at Bridge Abutments. J. Hydraul. Eng. 1992, 118, 615–631. [CrossRef] | spa |
dcterms.references | Mussetter, B.; Stoliker, D.; Foglesong, R.; Alsop, T.; Aguirre, F.; Stone, H.; Dodge, C.; Mortenson, J.; Carroll, R. Sediment and Erosion Design Guide Sscafca Sediment and Erosion Design Guide. 2008. Available online: https://sscafca.org/development/ documents/sediment_design_guide/Sediment%20Design%20Guide%2012-30-08.pdf (accessed on 7 November 2023). | spa |
dcterms.references | Look, B.G. Handbook of Geotechnical Investigation and Design Tables; Taylor & Francis: Oxfordshire, UK, 2007; ISBN 9780429224379. | spa |
dcterms.references | Chachereau, Y.; Chanson, H. Free-Surface Fluctuations and Turbulence in Hydraulic Jumps. Exp. Therm. Fluid Sci. 2011, 35, 896–909. [CrossRef] | spa |
dcterms.references | Guzmán, R.; Bezada, M.; Rodríguez-Santalla, I. Granulometric Characterization of Sediments in the Anastomosed System of the Apure River Venezuela. J. S. Am. Earth Sci. 2021, 109, 103274. [CrossRef] | spa |
dcterms.references | Khan, U.A.; Valentino, R. Investigating the Granulometric Distribution of Fluvial Sediments through the Hybrid Technique: Case Study of the Baganza River (Italy). Water 2022, 14, 1511. [CrossRef] | spa |
dcterms.references | Pereira, L.M. Erosión Local En Estribos. Master’s Thesis, Universidad de los Andes, Merida, Mexico, 1995 | spa |
dcterms.references | Gonzalez, J.R.P.; Escobar-Vargas, J.; Vargas-Luna, A.; Castiblanco, S.; Trujillo, D.; Guatame, A.C.; Corzo, G.; Santos, G.; Perez, L.A. Hydroinformatic Tools and Their Potential in the Search for Missing Persons in Rivers. Forensic Sci. Int. 2022, 341, 111478. [CrossRef] [PubMed] | spa |
dcterms.references | Oliveto, G.; Hager, W.H. Temporal Evolution of Clear-Water Pier and Abutment Scour. J. Hydraul. Eng. 2002, 128, 811–820. [CrossRef] | spa |
dcterms.references | Di Pietro, P.; Mahajan, R.R. Erosion Control Solutions with Case Studies; Springer: Berlin/Heidelberg, Germany, 2022; pp. 71–94 | spa |
dcterms.references | Radice, A.; Davari, V. Roughening Elements as Abutment Scour Countermeasures. J. Hydraul. Eng. 2014, 140, 06014014. [CrossRef] | spa |
dcterms.references | Aguirre-Pe, J.; Olivero, M.L.; Moncada, A.T. Particle Densimetric Froude Number for Estimating Sediment Transport. J. Hydraul. Eng. 2003, 129, 428–437. [CrossRef] | spa |
dc.identifier.doi | https:// doi.org/10.3390/w15224001 | |
dc.relation.citationedition | Vol.15 (2023) | spa |
dc.relation.citationendpage | 13 | spa |
dc.relation.citationissue | (2023) | spa |
dc.relation.citationstartpage | 1 | spa |
dc.relation.citationvolume | 15 | spa |
dc.relation.ispartofjournal | Water | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.subject.proposal | river bank protection | eng |
dc.subject.proposal | longitudinal training walls; | eng |
dc.subject.proposal | sediment transport | eng |
dc.subject.proposal | scour depth estimation | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
Files in this item
This item appears in the following Collection(s)
Except where otherwise noted, this item's license is described as : © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).