Mostrar el registro sencillo del ítem
Environmental Footprint of Inland Fisheries: Integrating LCA Analysis to Assess the Potential of Wastewater-Based Microalga Cultivation as a Promising Solution for Animal Feed Production
dc.contributor.author | ZUORRO, Antonio | |
dc.contributor.author | García-Martinez, Janet | |
dc.contributor.author | Barajas Solano, andres F | |
dc.contributor.author | Rodriguez Lizcano, Adriana | |
dc.date.accessioned | 2024-03-19T15:35:02Z | |
dc.date.available | 2024-03-19T15:35:02Z | |
dc.date.issued | 2023-11-20 | |
dc.identifier.uri | https://repositorio.ufps.edu.co/handle/ufps/6737 | |
dc.description.abstract | This study evaluated the environmental impacts of producing 1 kg of biomass for animal feed grown in inland fisheries effluents as a culture medium using the ReCiPe method. Four scenarios with two downstream alternatives were modeled using the life cycle assessment method: Algal Life Feed (ALF), Algal Life Feed with Recycled nutrients (ALF+Rn), Pelletized Biomass (PB), and Pelletized Biomass with Recycled nutrients (PB+Rn). The findings reveal a substantial reduction in environmental impacts when wastewater is employed as a water source and nutrient reservoir. However, the eutrophication and toxicity-related categories reported the highest normalized impacts. ALF+Rn emerges as the most promising scenario due to its reduced energy consumption, highlighting the potential for further improvement through alternative energy sources in upstream and downstream processes. Therefore, liquid waste from fish production is a unique opportunity to implement strategies to reduce the emission of nutrients and pollutants by producing microalgae rich in various high-value-added metabolites. | eng |
dc.format.extent | 15 Páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Processes | spa |
dc.rights | © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). | eng |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | spa |
dc.source | https://www.mdpi.com/2227-9717/11/11/3255 | spa |
dc.title | Environmental Footprint of Inland Fisheries: Integrating LCA Analysis to Assess the Potential of Wastewater-Based Microalga Cultivation as a Promising Solution for Animal Feed Production | eng |
dc.type | Artículo de revista | spa |
dcterms.references | Carballeira Braña, C.B.; Cerbule, K.; Senff, P.; Stolz, I.K. Towards Environmental Sustainability in Marine Finfish Aquaculture. Front. Mar. Sci. 2021, 8, 666662. [CrossRef] | spa |
dcterms.references | Rossignoli, C.M.; Manyise, T.; Shikuku, K.M.; Nasr-Allah, A.M.; Dompreh, E.B.; Henriksson, P.J.G.; Lam, R.D.; Lozano Lazo, D.; Tran, N.; Roem, A.; et al. Tilapia Aquaculture Systems in Egypt: Characteristics, Sustainability Outcomes and Entry Points for Sustainable Aquatic Food Systems. Aquaculture 2023, 577, 739952. [CrossRef] | spa |
dcterms.references | Kibria, G. Impacts of Microplastic on Fisheries and Seafood Security—Global Analysis and Synthesis. Sci. Total Environ. 2023, 904, 166652. [CrossRef] [PubMed] | spa |
dcterms.references | Zhang, J.; Akyol, Ç.; Meers, E. Nutrient Recovery and Recycling from Fishery Waste and By-Products. J. Environ. Manag. 2023, 348, 119266. [CrossRef] | spa |
dcterms.references | Sarasini, F.; Tirillò, J.; Zuorro, A.; Maffei, G.; Lavecchia, R.; Puglia, D.; Dominici, F.; Luzi, F.; Valente, T.; Torre, L. Recycling Coffee Silverskin in Sustainable Composites Based on a Poly(Butylene Adipate-Co-Terephthalate)/Poly(3-Hydroxybutyrate-Co-3- Hydroxyvalerate) Matrix. Ind. Crops Prod. 2018, 118, 311–320. [CrossRef] | spa |
dcterms.references | Degieter, M.; Gellynck, X.; Goyal, S.; Ott, D.; De Steur, H. Life Cycle Cost Analysis of Agri-Food Products: A Systematic Review. Sci. Total Environ. 2022, 850, 158012. [CrossRef] | spa |
dcterms.references | Ubando, A.T.; Anderson, S.; Ng, E.; Chen, W.-H.; Culaba, A.B.; Kwon, E.E. Life Cycle Assessment of Microalgal Biorefinery: A State-of-the-Art Review. Bioresour. Technol. 2022, 360, 127615. [CrossRef] | spa |
dcterms.references | Kumar, B.; Verma, P. Life Cycle Assessment: Blazing a Trail for Bioresources Management. Energy Convers. Manag. X 2021, 10, 100063. [CrossRef] | spa |
dcterms.references | Magalhães, I.B.; Ferreira, J.; de Siqueira Castro, J.; de Assis, L.R.; Calijuri, M.L. Agro-Industrial Wastewater-Grown Microalgae: A Techno-Environmental Assessment of Open and Closed Systems. Sci. Total Environ. 2022, 834, 155282. [CrossRef] | spa |
dcterms.references | Herrera, A.; D’Imporzano, G.; Acién Fernandez, F.G.; Adani, F. Sustainable Production of Microalgae in Raceways: Nutrients and Water Management as Key Factors Influencing Environmental Impacts. J. Clean. Prod. 2021, 287, 125005. [CrossRef] | spa |
dcterms.references | ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. International Organization for Standardization: Geneva, Switzerland, 2006. | spa |
dcterms.references | ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Organization for Standardization: Geneva, Switzerland, 2006. | spa |
dcterms.references | Maiolo, S.; Cristiano, S.; Gonella, F.; Pastres, R. Ecological Sustainability of Aquafeed: An Emergy Assessment of Novel or Underexploited Ingredients. J. Clean. Prod. 2021, 294, 126266. [CrossRef] | spa |
dcterms.references | Bartek, L.; Strid, I.; Henryson, K.; Junne, S.; Rasi, S.; Eriksson, M. Life Cycle Assessment of Fish Oil Substitute Produced by Microalgae Using Food Waste. Sustain. Prod. Consum. 2021, 27, 2002–2021. [CrossRef] | spa |
dcterms.references | Kashem, A.H.M.; Das, P.; Hawari, A.H.; Mehariya, S.; Thaher, M.I.; Khan, S.; Abduquadir, M.; Al-Jabri, H. Aquaculture from Inland Fish Cultivation to Wastewater Treatment: A Review. Rev. Environ. Sci. Bio/Technol. 2023, 22, 969–1008. [CrossRef] | spa |
dcterms.references | Gurreri, L.; Calanni Rindina, M.; Luciano, A.; Lima, S.; Scargiali, F.; Fino, D.; Mancini, G. Environmental Sustainability of Microalgae-Based Production Systems: Roadmap and Challenges towards the Industrial Implementation. Sustain. Chem. Pharm. 2023, 35, 101191. [CrossRef] | spa |
dcterms.references | Jayaseelan, M.; Usman, M.; Somanathan, A.; Palani, S.; Muniappan, G.; Jeyakumar, R.B. Microalgal Production of Biofuels Integrated with Wastewater Treatment. Sustainability 2021, 13, 8797. [CrossRef] | spa |
dcterms.references | Arashiro, L.T.; Josa, I.; Ferrer, I.; Van Hulle, S.W.H.; Rousseau, D.P.L.; Garfí, M. Life Cycle Assessment of Microalgae Systems for Wastewater Treatment and Bioproducts Recovery: Natural Pigments, Biofertilizer and Biogas. Sci. Total Environ. 2022, 847, 157615. [CrossRef] [PubMed] | spa |
dcterms.references | Wimmerova, L.; Keken, Z.; Solcova, O.; Vavrova, K. A Comparative Analysis of Environmental Impacts of Operational Phases of Three Selected Microalgal Cultivation Systems. Sustainability 2022, 15, 769. [CrossRef] | spa |
dcterms.references | Zuorro, A.; García-Martínez, J.B.; Barajas-Solano, A.F. The Application of Catalytic Processes on the Production of Algae-Based Biofuels: A Review. Catalysts 2021, 11, 22. [CrossRef] | spa |
dcterms.references | García-Martínez, J.B.; Ayala-Torres, E.; Reyes-Gómez, O.; Zuorro, A.; Andrés, F.; Barajas-Solano, B.; Crisóstomo, C.; BarajasFerreira, B. Evaluation of a Two-Phase Extraction System of Carbohydrates and Proteins from Chlorella Vulgaris Utex 1803. Chem. Eng. Trans. 2016, 49, 355–360. [CrossRef] | spa |
dcterms.references | Jankowska, E.; Sahu, A.K.; Oleskowicz-Popiel, P. Biogas from Microalgae: Review on Microalgae’s Cultivation, Harvesting and Pretreatment for Anaerobic Digestion. Renew. Sustain. Energy Rev. 2017, 75, 692–709. [CrossRef] | spa |
dcterms.references | Sakarika, M.; Koutra, E.; Tsafrakidou, P.; Terpou, A.; Kornaros, M. Microalgae-Based Remediation of Wastewaters; Elsevier Inc.: Amsterdam, The Netherlands, 2020; ISBN 9780128175361. | spa |
dcterms.references | Chen, C.-Y.; Zhao, X.-Q.; Yen, H.-W.; Ho, S.-H.; Cheng, C.-L.; Lee, D.-J.; Bai, F.-W.; Chang, J.-S. Microalgae-Based Carbohydrates for Biofuel Production. Biochem. Eng. J. 2013, 78, 1–10. [CrossRef] | spa |
dcterms.references | Zuorro, A.; Leal-Jerez, A.G.; Morales-Rivas, L.K.; Mogollón-Londoño, S.O.; Sanchez-Galvis, E.M.; García-Martínez, J.B.; BarajasSolano, A.F. Enhancement of Phycobiliprotein Accumulation in Thermotolerant Oscillatoria Sp. through Media Optimization. ACS Omega 2021, 6, 10527–10536. [CrossRef] [PubMed] | spa |
dcterms.references | Zuorro, A.; Malavasi, V.; Cao, G.; Lavecchia, R. Use of Cell Wall Degrading Enzymes to Improve the Recovery of Lipids from Chlorella Sorokiniana. Chem. Eng. J. 2019, 377, 120325. [CrossRef] | spa |
dcterms.references | Araújo, R.; Vázquez Calderón, F.; Sánchez López, J.; Azevedo, I.C.; Bruhn, A.; Fluch, S.; Garcia Tasende, M.; Ghaderiardakani, F.; Ilmjärv, T.; Laurans, M.; et al. Current Status of the Algae Production Industry in Europe: An Emerging Sector of the Blue Bioeconomy. Front. Mar. Sci. 2021, 7, 626389. [CrossRef] | spa |
dcterms.references | Chia, S.R.; Chew, K.W.; Leong, H.Y.; Ho, S.-H.; Munawaroh, H.S.H.; Show, P.L. CO2 Mitigation and Phycoremediation of Industrial Flue Gas and Wastewater via Microalgae-Bacteria Consortium: Possibilities and Challenges. Chem. Eng. J. 2021, 425, 131436. [CrossRef] | spa |
dcterms.references | Mehariya, S.; Goswami, R.K.; Verma, P.; Lavecchia, R.; Zuorro, A. Integrated Approach for Wastewater Treatment and Biofuel Production in Microalgae Biorefineries. Energies 2021, 14, 2282. [CrossRef] | spa |
dcterms.references | Rani, A.; Saini, K.; Bast, F.; Mehariya, S.; Bhatia, S.; Lavecchia, R.; Zuorro, A. Microorganisms: A Potential Source of Bioactive Molecules for Antioxidant Applications. Molecules 2021, 26, 1142. [CrossRef] | spa |
dcterms.references | García-Martínez, J.B.; Contreras-Ropero, J.E.; Urbina-Suarez, N.A.; López-Barrera, G.L.; Barajas-Solano, A.F.; Kafarov, V.; BarajasFerreira, C.; Ibarra-Mojica, D.M.; Zuorro, A. A Simulation Analysis of a Microalgal-Production Plant for the Transformation of Inland-Fisheries Wastewater in Sustainable Feed. Water 2022, 14, 250. [CrossRef] | spa |
dcterms.references | García-Martínez, J.B.; Sanchez-Tobos, L.P.; Carvajal-Albarracín, N.A.; Barajas-Solano, A.F.; Barajas-Ferreira, C.; Kafarov, V.; Zuorro, A. The Circular Economy Approach to Improving CNP Ratio in Inland Fishery Wastewater for Increasing Algal Biomass Production. Water 2022, 14, 749. [CrossRef] | spa |
dcterms.references | Tan, Y.H.; Chai, M.K.; Na, J.Y.; Wong, L.S. Microalgal Growth and Nutrient Removal Efficiency in Non-Sterilised Primary Domestic Wastewater. Sustainability 2023, 15, 6601. [CrossRef] | spa |
dcterms.references | Urbina-Suarez, N.A.; Barajas-Solano, A.F.; Garcia-Martinez, J.B.; Lopez-Barrera, G.L.; González-Delgado, A.D. Prospects for Using Wastewater from a Farm for Algae Cultivation: The Case of Eastern Colombia. J. Water Land Dev. 2022, 172–179. [CrossRef] | spa |
dcterms.references | Yadav, G.; Dubey, B.K.; Sen, R. A Comparative Life Cycle Assessment of Microalgae Production by CO2 Sequestration from Flue Gas in Outdoor Raceway Ponds under Batch and Semi-Continuous Regime. J. Clean. Prod. 2020, 258, 120703. [CrossRef] | spa |
dcterms.references | Davis, D.; Morão, A.; Johnson, J.K.; Shen, L. Life Cycle Assessment of Heterotrophic Algae Omega-3. Algal Res. 2021, 60, 102494. [CrossRef] | spa |
dcterms.references | McKuin, B.L.; Kapuscinski, A.R.; Sarker, P.K.; Cheek, N.; Colwell, A.; Schoffstall, B.; Greenwood, C. Comparative Life Cycle Assessment of Heterotrophic Microalgae Schizochytrium and Fish Oil in Sustainable Aquaculture Feeds. Elem. Sci. Anthr. 2022, 10, 98. [CrossRef] | spa |
dcterms.references | Schade, S.; Meier, T. Distinct Microalgae Species for Food—Part 1: A Methodological (Top-down) Approach for the Life Cycle Assessment of Microalgae Cultivation in Tubular Photobioreactors. J. Appl. Phycol. 2020, 32, 2977–2995. [CrossRef] | spa |
dcterms.references | Maiolo, S.; Parisi, G.; Biondi, N.; Lunelli, F.; Tibaldi, E.; Pastres, R. Fishmeal Partial Substitution within Aquafeed Formulations: Life Cycle Assessment of Four Alternative Protein Sources. Int. J. Life Cycle Assess. 2020, 25, 1455–1471. [CrossRef] | spa |
dcterms.references | Morales, M.; Bonnefond, H.; Bernard, O. Rotating Algal Biofilm versus Planktonic Cultivation: LCA Perspective. J. Clean. Prod. 2020, 257, 120547. [CrossRef] | spa |
dcterms.references | Rodríguez, P.D.; Arce Bastias, F.; Arena, A.P. Modeling and Environmental Evaluation of a System Linking a Fishmeal Facility with a Microalgae Plant within a Circular Economy Context. Sustain. Prod. Consum. 2019, 20, 356–364. [CrossRef] | spa |
dcterms.references | Castellanos-Estupinan, M.; Sanchez-Galvis, M.; Garcia-Martinez, J.B.; Barajas-Ferreira, C.; Zuorro, A.; Barajas-Solano, A.F. Design of an Electroflotation System for the Concentration and Harvesting of Freshwater Microalgae. Chem. Eng. Trans. 2018, 64, 1–6. [CrossRef] | spa |
dcterms.references | D’Imporzano, G.; Veronesi, D.; Salati, S.; Adani, F. Carbon and Nutrient Recovery in the Cultivation of Chlorella Vulgaris: A Life Cycle Assessment Approach to Comparing Environmental Performance. J. Clean. Prod. 2018, 194, 685–694. [CrossRef] | spa |
dcterms.references | Nigam, H.; Jain, R.; Malik, A.; Singh, V. Comparative Life-Cycle Assessment of Microalgal Biomass Production in Conventional Growth Media versus Newly Developed Nanoemulsion Media. Bioresour. Technol. 2022, 352, 127069. [CrossRef] [PubMed] | spa |
dcterms.references | Zhao, X.; Meng, X.; Liu, Y.; Bai, S.; Li, B.; Li, H.; Hou, N.; Li, C. Single-Cell Sorting of Microalgae and Identification of Optimal Conditions by Using Response Surface Methodology Coupled with Life-Cycle Approaches. Sci. Total Environ. 2022, 832, 155061. [CrossRef] [PubMed] | spa |
dcterms.references | Pegallapati, A.K.; Frank, E.D. Energy Use and Greenhouse Gas Emissions from an Algae Fractionation Process for Producing Renewable Diesel. Algal Res. 2016, 18, 235–240. [CrossRef] | spa |
dcterms.references | Sun, J.; Yang, L.; Xiao, S.; Chu, H.; Jiang, S.; Yu, Z.; Zhou, X.; Zhang, Y. A Promising Microalgal Wastewater Cyclic Cultivation Technology: Dynamic Simulations, Economic Viability, and Environmental Suitability. Water Res. 2022, 217, 118411. [CrossRef] [PubMed] | spa |
dcterms.references | Peter, A.P.; Tan, X.; Lim, J.Y.; Chew, K.W.; Koyande, A.K.; Show, P.L. Environmental Analysis of Chlorella Vulgaris Cultivation in Large Scale Closed System under Waste Nutrient Source. Chem. Eng. J. 2022, 433, 134254. [CrossRef] | spa |
dcterms.references | Pérez-López, P.; de Vree, J.H.; Feijoo, G.; Bosma, R.; Barbosa, M.J.; Moreira, M.T.; Wijffels, R.H.; van Boxtel, A.J.B.; Kleinegris, D.M.M. Comparative Life Cycle Assessment of Real Pilot Reactors for Microalgae Cultivation in Different Seasons. Appl. Energy 2017, 205, 1151–1164. [CrossRef] | spa |
dcterms.references | Moshood, T.D.; Nawanir, G.; Ahmad, M.H.; Lee, K.L.; Hussain, S. Sustainable Business Model Innovation and Perspective of Using Microalgae to Produce Biofuel: A Systematic Literature Review. J. Sustain. Sci. Manag. 2022, 17, 291–312. [CrossRef] | spa |
dcterms.references | Hossain, N.; Zaini, J.; Indra Mahlia, T.M. Life Cycle Assessment, Energy Balance and Sensitivity Analysis of Bioethanol Production from Microalgae in a Tropical Country. Renew. Sustain. Energy Rev. 2019, 115, 109371. [CrossRef] | spa |
dcterms.references | Bussa, M.; Zollfrank, C.; Röder, H. Life-Cycle Assessment and Geospatial Analysis of Integrating Microalgae Cultivation into a Regional Economy. J. Clean. Prod. 2020, 243, 118630. [CrossRef] | spa |
dcterms.references | Branco-Vieira, M.; Costa, D.; Mata, T.M.; Martins, A.A.; Freitas, M.A.V.; Caetano, N.S. A Life Cycle Inventory of Microalgae-Based Biofuels Production in an Industrial Plant Concept. Energy Rep. 2020, 6, 397–402. [CrossRef] | spa |
dcterms.references | Sfez, S.; Van Den Hende, S.; Taelman, S.E.; De Meester, S.; Dewulf, J. Environmental Sustainability Assessment of a Microalgae Raceway Pond Treating Aquaculture Wastewater: From up-Scaling to System Integration. Bioresour. Technol. 2015, 190, 321–331. [CrossRef] [PubMed] | spa |
dcterms.references | Sills, D.L.; Van Doren, L.G.; Beal, C.; Raynor, E. The Effect of Functional Unit and Co-Product Handling Methods on Life Cycle Assessment of an Algal Biorefinery. Algal Res. 2020, 46, 101770. [CrossRef] | spa |
dcterms.references | Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The Ecoinvent Database Version 3 (Part I): Overview and Methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [CrossRef] | spa |
dcterms.references | Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: A Harmonised Life Cycle Impact Assessment Method at Midpoint and Endpoint Level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [CrossRef] | spa |
dcterms.references | de Souza, M.H.B.; Calijuri, M.L.; Assemany, P.P.; de Siqueira Castro, J.; de Oliveira, A.C.M. Soil Application of Microalgae for Nitrogen Recovery: A Life-Cycle Approach. J. Clean. Prod. D 2019, 211, 342–349. [CrossRef] | spa |
dcterms.references | Cheng, J.; Wang, Q.; Yu, J. Life Cycle Assessment of Potential Environmental Burden and Human Capital Loss Caused by Apple Production System in China. Environ. Sci. Pollut. Res. 2023, 30, 62015–62031. [CrossRef] | spa |
dcterms.references | . Sillcox, R.; Gitonga, B.; Meiklejohn, D.A.; Wright, A.S.; Oelschlager, B.K.; Bryant, M.K.; Tarefder, R.; Khan, Z.; Zhu, J. The Environmental Impact of Surgical Telemedicine: Life Cycle Assessment of Virtual vs. in-Person Preoperative Evaluations for Benign Foregut Disease. Surg. Endosc. 2023, 37, 5696–5702. [CrossRef] | spa |
dcterms.references | Hassan, M.; Usman, N.; Hussain, M.; Yousaf, A.; Khattak, M.A.; Yousaf, S.; Mishr, R.S.; Ahmad, S.; Rehman, F.; Rashedi, A. Environmental and Socio-Economic Assessment of Biomass Pellets Biofuel in Hazara Division, Pakistan. Sustainability 2023, 15, 12089. [CrossRef] | spa |
dcterms.references | Asadollahfardi, G.; Noghani, S.; Panahandeh, A.; Samadi, A.; Asnaashari, E. Evaluation of Environmental Sustainability of the Construction and Operation Phases of Man-made Lakes; A Case Study: Chitgar Lake. Environ. Prog. Sustain. Energy 2023, 42, e14160. [CrossRef] | spa |
dcterms.references | Arashiro, L.T.; Montero, N.; Ferrer, I.; Acién, F.G.; Gómez, C.; Garfí, M. Life Cycle Assessment of High Rate Algal Ponds for Wastewater Treatment and Resource Recovery. Sci. Total Environ. 2018, 622–623, 1118–1130. [CrossRef] | spa |
dcterms.references | Colzi Lopes, A.; Valente, A.; Iribarren, D.; González-Fernández, C. Energy Balance and Life Cycle Assessment of a MicroalgaeBased Wastewater Treatment Plant: A Focus on Alternative Biogas Uses. Bioresour. Technol. 2018, 270, 138–146. [CrossRef] | spa |
dcterms.references | de Siqueira Castro, J.; Calijuri, M.L.; Ferreira, J.; Assemany, P.P.; Ribeiro, V.J. Microalgae Based Biofertilizer: A Life Cycle Approach. Sci. Total Environ. 2020, 724, 138138. [CrossRef] | spa |
dcterms.references | Payen, S.; Ledgard, S.F. Aquatic Eutrophication Indicators in LCA: Methodological Challenges Illustrated Using a Case Study in New Zealand. J. Clean. Prod. 2017, 168, 1463–1472. [CrossRef] | spa |
dcterms.references | Mio, A.; Fermeglia, M.; Favi, C. A Critical Review and Normalization of the Life Cycle Assessment Outcomes in the Naval Sector. Bibliometric Analysis and Characteristics of the Studies. J. Clean. Prod. 2022, 371, 133268. [CrossRef] | spa |
dcterms.references | de Souza Ferreira, M.; Dodds, W.K.; Fernandes Cunha, D.G. Carbon Dioxide and Methane Emissions across Tropical and Subtropical Inland Water Ecosystems in Brazil: Meta-Analysis of General Patterns and Potential Drivers. Limnetica 2023, 43, 1. [CrossRef] | spa |
dcterms.references | Gómez-Gener, L.; Gubau, M.; von Schiller, D.; Marcé, R.; Obrador, B. Integrated Assessment of the Net Carbon Footprint of Small Hydropower Plants. Environ. Res. Lett. 2023, 18, 084015. [CrossRef] | spa |
dcterms.references | Taelman, S.E.; De Meester, S.; Roef, L.; Michiels, M.; Dewulf, J. The Environmental Sustainability of Microalgae as Feed for Aquaculture: A Life Cycle Perspective. Bioresour. Technol. 2013, 150, 513–522. [CrossRef] | spa |
dcterms.references | Thielemann, A.K.; Smetana, S.; Pleissner, D. Cultivation of the Heterotrophic Microalga Galdieria Sulphuraria on Food Waste: A Life Cycle Assessment. Bioresour. Technol. 2021, 340, 125637. [CrossRef] | spa |
dcterms.references | Nishshanka, G.K.S.H.; Liyanaarachchi, V.C.; Premaratne, M.; Nimarshana, P.H.V.; Ariyadasa, T.U.; Kornaros, M. WastewaterBased Microalgal Biorefineries for the Production of Astaxanthin and Co-Products: Current Status, Challenges and Future Perspectives. Bioresour. Technol. 2021, 342, 126018. [CrossRef] | spa |
dcterms.references | Nasir, N.M.; Bakar, N.S.A.; Lananan, F.; Abdul Hamid, S.H.; Lam, S.S.; Jusoh, A. Treatment of African Catfish, Clarias gariepinus Wastewater Utilizing Phytoremediation of Microalgae, Chlorella sp. with Aspergillus niger Bio-Harvesting. Bioresour. Technol. 2015, 190, 492–498. [CrossRef | spa |
dcterms.references | Mu, D.; Min, M.; Krohn, B.; Mullins, K.A.; Ruan, R.; Hill, J. Life Cycle Environmental Impacts of Wastewater-Based Algal Biofuels. Environ. Sci. Technol. 2014, 48, 11696–11704. [CrossRef] | spa |
dcterms.references | Marangon, B.B.; Calijuri, M.L.; de Siqueira Castro, J.; Assemany, P.P. A Life Cycle Assessment of Energy Recovery Using Briquette from Wastewater Grown Microalgae Biomass. J. Environ. Manag. 2021, 285, 112171. [CrossRef] | spa |
dcterms.references | Schneider, R.d.C.d.S.; de Moura Lima, M.; Hoeltz, M.; de Farias Neves, F.; John, D.K.; de Azevedo, A. Life Cycle Assessment of Microalgae Production in a Raceway Pond with Alternative Culture Media. Algal Res. 2018, 32, 280–292. [CrossRef] | spa |
dcterms.references | Raghuvanshi, S.; Bhakar, V.; Chava, R.; Sangwan, K.S. Comparative Study Using Life Cycle Approach for the Biodiesel Production from Microalgae Grown in Wastewater and Fresh Water. Procedia CIRP 2018, 69, 568–572. [CrossRef] | spa |
dcterms.references | Hao, X.; Wang, X.; Liu, R.; Li, S.; van Loosdrecht, M.C.M.; Jiang, H. Environmental Impacts of Resource Recovery from Wastewater Treatment Plants. Water Res. 2019, 160, 268–277. [CrossRef] | spa |
dc.identifier.doi | https:// doi.org/10.3390/pr11113255 | |
dc.relation.citationedition | Vol.11 (2023) | spa |
dc.relation.citationendpage | 15 | spa |
dc.relation.citationissue | (2023) | spa |
dc.relation.citationstartpage | 1 | spa |
dc.relation.citationvolume | 11 | spa |
dc.relation.cites | Zuorro A, García-Martínez JB, Barajas-Solano AF, Rodríguez-Lizcano A, Kafarov V. Environmental footprint of inland fisheries: Integrating LCA analysis to assess the potential of wastewater-based microalga cultivation as a promising solution for animal feed production. Processes (Basel) [Internet]. 2023;11(11):3255. Disponible en: http://dx.doi.org/10.3390/pr11113255 | |
dc.relation.ispartofjournal | Processes | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.subject.proposal | microalga | eng |
dc.subject.proposal | sustainable development | eng |
dc.subject.proposal | feed sustainability | eng |
dc.subject.proposal | fish production | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Ambiente y Vida - GIAV [124]
Excepto si se señala otra cosa, la licencia del ítem se describe como © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).