dc.contributor.author | Pulgarín, D A | |
dc.contributor.author | De Plaza, J S | |
dc.contributor.author | Ruge Cárdenas, Juan Carlos | |
dc.contributor.author | Rojas, J P | |
dc.date.accessioned | 2022-12-06T20:27:15Z | |
dc.date.available | 2022-12-06T20:27:15Z | |
dc.date.issued | 2021-01-19 | |
dc.identifier.uri | https://repositorio.ufps.edu.co/handle/ufps/6652 | |
dc.description.abstract | This study proposes a methodology for the calibration of combined sewer overflow (CSO),
incorporating the results of the three-dimensional ANSYS CFX model in the SWMM onedimensional model. The procedure consists of constructing calibration curves in ANSYS CFX
that relate the input flow to the CSO with the overflow, to then incorporate them into the
SWMM model. The results obtained show that the behavior of the flow over the crest of the
overflow weir varies in space and time. Therefore, the flow of entry to the CSO and the flow
of excesses maintain a non-linear relationship, contrary to the results obtained in the onedimensional model. However, the uncertainty associated with the idealization of flow
methodologies in one dimension is reduced under the SWMM model with kinematic wave
conditions and simulating CSO from curves obtained in ANSYS CFX. The result obtained
facilitates the calibration of combined sewer networks for permanent or non-permanent
flow conditions, by means of the construction of curves in a three-dimensional model,
especially when the information collected in situ is limited. | eng |
dc.format.extent | 13 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria | spa |
dc.relation.ispartof | Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria. Vol.37 N°.1. (2021) | |
dc.rights | This is an article distributed under the terms of the Creative Commons BY-NC-SA license | eng |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.source | https://www.scipedia.com/public/Pulgarin_et_al_2021a# | spa |
dc.title | Hydraulic modeling of combined sewers overflow integrating the results of the swmm and CFX models | eng |
dc.type | Artículo de revista | spa |
dcterms.references | U.S. Environmental Protection Agency. Combined sewer overflows guidance for monitoring and modeling. Washington, 1999. | spa |
dcterms.references | Capital District Regional Planning Commission (CDRPC). Combined sewer system modeling work plan. New York, 2007. | spa |
dcterms.references | Rossman L.A. Storm water management model user’s manual, version 5.0. National Risk Management Research Laboratory, 2010. | spa |
dcterms.references | Harwood R., Saul A.J. Modelling the performance of combined‐sewer overflow chambers. Water and Environment Journal, 15(4):300–304, 2001. | spa |
dcterms.references | Vazquez J., Kouyi G.L., Zug M. Modelling and instrumentation of the storm overflows of the combined sewer system of Sélestat. Urban Water Journal, 3(2):91–110, 2006. | spa |
dcterms.references | He C., Marsalek J., Rochfort Q., Krishnappan B.G. Case study: refinement of hydraulic operation of a complex CSO storage/treatment facility by numerical and physical modeling. Journal of Hydraulic Engineering, 132(2):131–139, 2006. | spa |
dcterms.references | He C., Marsalek J. Hydraulic optimization of a combined sewer overflow (CSO) storage facility using numerical and physical modeling. Canadian Journal of Civil Engineering, 36(2):363–373, 2009. | spa |
dcterms.references | Fach S., Sitzenfrei R., Rauch W. Determining the spill flow discharge of combined sewer overflows using rating curves based on computational fluid dynamics instead of the standard weir equation. Water Science and Technology, 60(12):3035–3043, 2009. | spa |
dcterms.references | Dufresne M., Vazquez J., Terfous A., Ghenaim A., Poulet J.-B. CFD modeling of solid separation in three combined sewer overflow chambers. Journal of Environmental Engineering, 135(9):776–787, 2009. | spa |
dcterms.references | Isel S., Dufresne M., Bardiaux J.B., Fischer M., Vazquez J. Computational fluid dynamics based assessment of discharge-water depth relationships for combined sewer overflows. Urban Water Journal, 11(8):631–640, 2014. | spa |
dcterms.references | Chen Z., Han S., Zhou F.-Y., Wang K. A CFD modeling approach for municipal sewer system design optimization to minimize emissions into receiving water body. Water Resources Management, 27(7):2053–2069, 2013. | spa |
dcterms.references | Harwood R. CSO modeling strategies using computational fluid dynamics. In Global Solutions for Urban Drainage, pp. 1–9, 2002. | spa |
dcterms.references | GRUCON. Estudio de la rehabilitación del alcantarillado de la ciudad de Bogotá, 1999. | spa |
dcterms.references | Stovin V.R., Saul A.J. Computational fluid dynamics and the design of sewage storage chambers. Water and Environment Journal, 14(2):103–110, 2000. | spa |
dcterms.references | Dufresne M., Vazquez J., Terfous A., Ghenaim A., Poulet J.-B. Experimental investigation and CFD modelling of flow, sedimentation, and solids separation in a combined sewer detention tank. Computers & Fluids, 38(5):1042–1049, 2009. | spa |
dcterms.references | Cataño-Lopera Y.A., Bedoya D., Anderson N. Using computational fluid dynamics modeling to improve flow partition in a combined sewer diversion structure under supercritical flow. Proceedings of the Water Environment Federation, 2017(2):642–654, 2017. | spa |
dcterms.references | Kouyi G.L., Bret P., Didier J.-M., Chocat B., Billat C. The use of CFD modelling to optimise measurement of overflow rates in a downstream-controlled dual-overflow structure. Water Science and Technology, 64(2):521–527, 2011. | spa |
dc.contributor.corporatename | Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria | spa |
dc.identifier.doi | 10.23967/j.rimni.2021.01.006 | |
dc.publisher.place | España | spa |
dc.relation.citationedition | Vol.37 N°.1. (2021) | spa |
dc.relation.citationendpage | 13 | spa |
dc.relation.citationissue | 1(2021) | spa |
dc.relation.citationstartpage | 1 | spa |
dc.relation.citationvolume | 37 | spa |
dc.relation.cites | Pulgarín, D., Plaza, J., Cárdenas, J. C. R., & Rojas, J. P. (2021). Hydraulic modeling of combined sewers overflow integrating the results of the SWMM and CFX models. Métodos numéricos para cálculo y diseño en ingeniería: Revista internacional, 37(1), 1-964. | |
dc.relation.ispartofjournal | Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.subject.proposal | numerical modelling | eng |
dc.subject.proposal | Constitutive models | eng |
dc.subject.proposal | Hydraulic simulation | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |