Mostrar el registro sencillo del ítem

dc.contributor.authorOrozco Lozano, Wilman
dc.contributor.authorFonseca-Vigoya, Marlen Del Socorro
dc.contributor.authorPabón-León, Jhon
dc.date.accessioned2022-12-04T22:28:46Z
dc.date.available2022-12-04T22:28:46Z
dc.date.issued2021-11-28
dc.identifier.issn20754442spa
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/6633
dc.description.abstractThe present research aims to analyze the kinematic and dynamic behavior of the piston ring package. The development of the research was carried out through the development of numerical simulation by means of CFD. The analysis involves the three piston rings for the development of simulations that are closer to the real conditions of the engine since most of the investigations tend to focus on the study of the compression ring only. The simulation was reinforced by the incorporation of mathematical models, which allow determining the piston kinematics, the lubrication properties as a function of temperature, contact friction, and gas leakage. For the simulation, the CAD of the piston and the connecting rod—crankshaft mechanism was carried out, taking as a reference the geometry of a diesel engine. From the results obtained, it was possible to show that the first ring exhibits considerably greater radial and axial movement compared to the second and third piston rings. Additionally, it was shown that the first and second rings tend to maintain a negative tilt angle throughout the combustion cycle, which facilitates the advancement of the combustion gases over the piston grooves. Therefore, it is necessary to use strategies so that these rings tend to maintain a positive inclination. The analysis of the pressure conditions in the second ring are 150% and 480% higher compared to the conditions present in the third ring. Due to the above, it is necessary to focus efforts on the design of the profile of this ring. The study of energy losses showed that the combination of leakage gases and friction are responsible for a mechanical loss between 6–16%. In general, the development of the proposed methodology is a novel tool for the joint analysis of the kinematic characteristics, pressure conditions, and energy losses. In this way, integrated analysis of changes caused by piston ring designs is possible.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights© 2021 by the authors. Licensee MDPI, Basel, Switzerlandeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://www.mdpi.com/2075-4442/9/12/116spa
dc.titleStudy of the Kinematics and Dynamics of the Ring Pack of a Diesel Engine by Means of the Construction of CFD Model in Conjunction with Mathematical Modelseng
dc.typeArtículo de revistaspa
dcterms.referencesReitz, R.D.; Ogawa, H.; Payri, R.; Fansler, T.; Kokjohn, S.; Moriyoshi, Y.; Agarwal, A.K.; Arcoumanis, D.; Assanis, D.; Bae, C.; et al. IJER editorial: The future of the internal combustion engine. Int. J. Engine Res. 2020, 21, 3–10spa
dcterms.referencesPatil, V.; Shastry, V.; Himabindu, M.; Ravikrishna, R.V. Life-cycle analysis of energy and greenhouse gas emissions of automotive fuels in India: Part 2—Well-to-wheels analysis. Energy 2016, 96, 699–712.spa
dcterms.referencesCorrea, G.; Muñoz, P.M.; Rodriguez, C.R. A comparative energy and environmental analysis of a diesel, hybrid, hydrogen and electric urban bus. Energy 2019, 187, 115906.spa
dcterms.referencesCorrea, G.; Muñoz, P.M.; Rodriguez, C.R. A comparative energy and environmental analysis of a diesel, hybrid, hydrogen and electric urban bus. Energy 2019, 187, 115906.spa
dcterms.referencesSöderfjäll, M.; Herbst, H.M.; Larsson, R.; Almqvist, A. Influence on friction from piston ring design, cylinder liner roughness and lubricant properties. Tribol. Int. 2017, 116, 272–284.spa
dcterms.referencesRahmani, R.; Rahnejat, H.; Fitzsimons, B.; Dowson, D. The effect of cylinder liner operating temperature on frictional loss and engine emissions in piston ring conjunction. Appl. Energy 2017, 191, 568–581.spa
dcterms.referencesSchommers, J.; Scheib, H.; Hartweg, M.; Bosler, A. Minimising friction in combustion engines. MTZ Worldw. 2013, 74, 28–35.spa
dcterms.referencesGore, M.; Theaker, M.; Howell-Smith, S.; Rahnejat, H.; King, P.D. Direct measurement of piston friction of internal-combustion engines using the floating-liner principle. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2014, 228, 344–354.spa
dcterms.referencesHanke, W.; Ando, H.; Fahr, M.; Voigt, M. Friction Reduction in Power Cylinder Systems for Pass enger Car Diesel Engines. MTZ Worldw. 2014, 75, 26–31spa
dcterms.referencesKoszalka, G.; Hunicz, J. Comparative study of energy losses related to the ring pack operation in homogeneous charge compression ignition and spark ignition combustion. Energy 2021, 235, 121388–121399.spa
dcterms.referencesTurnbull, R.; Dolatabadi, N.; Rahmani, R.; Rahnejat, H. An assessment of gas power leakage and frictional losses from the top compression ring of internal combustion engines. Tribol. Int. 2020, 142, 105991.spa
dcterms.referencesBolander, N.W.; Steenwyk, B.D.; Kumar, A.; Sadeghi, F. Film thickness and friction measurement of piston ring cylinder liner contact with corresponding modeling including mixed lubrication. In Proceedings of the Internal Combustion Engine Division Fall Technical Conference, Long Beach, CA, USA, 24–27 October 2004; Volume 37467, pp. 811–821.spa
dcterms.referencesAvan, E.Y.; Spencer, A.; Dwyer-Joyce, R.S.; Almqvist, A.; Larsson, R. Experimental and numerical investigations of oil film formation and friction in a piston ring–liner contact. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2013, 227, 126–140.spa
dcterms.referencesZavos, A.; Nikolakopoulos, P.G. Tribology of new thin compression ring of fired engine under controlled conditions-A combined experimental and numerical study. Tribol. Int. 2018, 128, 214–230.spa
dcterms.referencesKoszalka, G. The use of the gas flow model to improve the design of the piston-rings-cylinder system of a diesel engine. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Kragujevac, Serbia, 5–7 September 2019; Volume 659, p. 12072.spa
dcterms.referencesOliva, A.; Held, S. Numerical multiphase simulation and validation of the flow in the piston ring pack of an internal combustion engine. Tribol. Int. 2016, 101, 98–109.spa
dcterms.referencesSkoblo, T.S.; Sidashenko, A.I.; Satanovskii, E.A.; Oleinik, A.K.; Mal’tsev, T.V. Specific Features of Wear of Oil-Scraper Piston Rings with Tin Coatings in Bench Tests for Friction and Wear. Mater. Sci. 2018, 53, 501–507.spa
dcterms.referencesDelprete, C.; Razavykia, A.; Baldissera, P. Detailed analysis of piston secondary motion and tribological performance. Int. J. Engine Res. 2020, 21, 1647–1661spa
dcterms.referencesDelprete, C.; Razavykia, A. Piston ring--liner lubrication and tribological performance evaluation: A review. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2018, 232, 193–209.spa
dcterms.referencesDelprete, C.; Razavykia, A. Statistical Study of Ring Geometry Effect on Piston Ring/Liner Tribology Using Classical Design of Experiment; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2018.spa
dcterms.referencesBaker, C.; Theodossiades, S.; Rahmani, R.; Rahnejat, H.; Fitzsimons, B. On the Transient Three-Dimensional Tribodynamics of Internal Combustion Engine Top Compression Ring. J. Eng. Gas Turbines Power 2017, 139, 062801.spa
dcterms.referencesXu, Y.; Zheng, Q.; Geng, J.; Dong, Y.; Tian, M.; Yao, L.; Dearn, K.D. Synergistic effects of electroless piston ring coatings and nano-additives in oil on the friction and wear of a piston ring/cylinder liner pair. Wear 2019, 422, 201–211spa
dcterms.referencesPeng, Y.; Xu, Y.; Geng, J.; Dearn, K.D.; Hu, X. Tribological assessment of coated piston ring-cylinder liner contacts under bio-oil lubricated conditions. Tribol. Int. 2017, 107, 283–293spa
dcterms.referencesPerera, M.S.M.; Theodossiades, S.; Rahnejat, H. Elasto-multi-body dynamics of internal combustion engines with tribological conjunctions. Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn. 2010, 224, 261–277.spa
dcterms.referencesDowson, D.; Higginson, G.R. A Numerical Solution to the Elasto-Hydrodynamic Problem. J. Mech. Eng. Sci. 1959, 1, 6–15.spa
dcterms.referencesHoupert, L. New Results of Traction Force Calculations in Elastohydrodynamic Contacts. J. Tribol. 1985, 107, 241–245.spa
dcterms.referencesRahnejat, H. Tribology and Dynamics of Engine and Powertrain: Fundamentals Applications and Future Trends; Woodhead Publishing: Cambridge, UK, 2010.spa
dcterms.referencesRahmani, R.; Theodossiades, S.; Rahnejat, H.; Fitzsimons, B. Transient elastohydrodynamic lubrication of rough new or worn piston compression ring conjunction with an out-of-round cylinder bore. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2012, 226, 284–305spa
dcterms.referencesTeodorescu, M.; Taraza, D.; Henein, N.A.; Bryzik, W. Simplified Elasto-Hydrodynamic Friction Model of the Cam-Tappet Contact; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2003spa
dcterms.referencesTeodorescu, M.; Balakrishnan, S.; Rahnejat, H. Integrated Tribological Analysis within a Multi- physics Approach to System Dynamics. Tribol. Interface Eng. Ser. 2005, 48, 725–737.spa
dcterms.referencesTheaker, M.; Rahmani, R.; Rahnejat, H. Prediction of Ring-Bore Conformance and Contact Condition and Experimental Validation. In Proceedings of the ASME 2012 Internal Combustion Engine Division Spring Technical Conference, Turin, Italy, 6–9 May 2012; American Society of Mechanical Engineers: New York, NY, USA, 2012; pp. 885–892spa
dcterms.referencesWoods, W.A. On the role of the harmonic mean isentropic exponent in the analysis of the closed-cycle gas turbine. Proc. Inst. Mech. Eng. Part A J. Power Energy 1991, 205, 287–291.spa
dcterms.referencesJeng, Y.-R. Theoretical Analysis of Piston-Ring Lubrication Part I—Fully Flooded Lubrication. Tribol. Trans. 1992, 35, 696–706.spa
dcterms.referencesPriest, M.; Dowson, D.; Taylor, C.M. Theoretical modelling of cavitation in piston ring lubrication. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2000, 214, 435–447.spa
dcterms.referencesPopoola, O.; Cao, Y. The influence of turbulence models on the accuracy of CFD analysis of a reciprocating mechanism driven heat loop. Case Stud. Therm. Eng. 2016, 8, 277–290.spa
dc.contributor.corporatenameMDPIspa
dc.identifier.doihttps://doi.org/10.3390/lubricants9120116
dc.relation.citationeditionhttps://www.mdpi.com/2075-4442/9/12/116spa
dc.relation.citationendpage18spa
dc.relation.citationissue12spa
dc.relation.citationstartpage1spa
dc.relation.citationvolume9spa
dc.relation.ispartofjournalLubricants MDPIspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalengine pistoneng
dc.subject.proposalblow-by gaseng
dc.subject.proposalenergy distributioneng
dc.subject.proposalnumerical analysiseng
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

© 2021 by the authors. Licensee MDPI, Basel, Switzerland
Excepto si se señala otra cosa, la licencia del ítem se describe como © 2021 by the authors. Licensee MDPI, Basel, Switzerland