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Abstract: The present research aims to analyze the kinematic and dynamic behavior of the piston ring
package. The development of the research was carried out through the development of numerical
simulation by means of CFD. The analysis involves the three piston rings for the development of
simulations that are closer to the real conditions of the engine since most of the investigations tend to
focus on the study of the compression ring only. The simulation was reinforced by the incorporation
of mathematical models, which allow determining the piston kinematics, the lubrication properties
as a function of temperature, contact friction, and gas leakage. For the simulation, the CAD of the
piston and the connecting rod—crankshaft mechanism was carried out, taking as a reference the
geometry of a diesel engine. From the results obtained, it was possible to show that the first ring
exhibits considerably greater radial and axial movement compared to the second and third piston
rings. Additionally, it was shown that the first and second rings tend to maintain a negative tilt angle
throughout the combustion cycle, which facilitates the advancement of the combustion gases over
the piston grooves. Therefore, it is necessary to use strategies so that these rings tend to maintain a
positive inclination. The analysis of the pressure conditions in the second ring are 150% and 480%
higher compared to the conditions present in the third ring. Due to the above, it is necessary to
focus efforts on the design of the profile of this ring. The study of energy losses showed that the
combination of leakage gases and friction are responsible for a mechanical loss between 6–16%. In
general, the development of the proposed methodology is a novel tool for the joint analysis of the
kinematic characteristics, pressure conditions, and energy losses. In this way, integrated analysis of
changes caused by piston ring designs is possible.

Keywords: engine piston; blow-by gas; energy distribution; numerical analysis

1. Introduction

Currently, internal combustion engines (ICEs) play an indispensable role as propulsion
systems in the transport sector. Despite the advancement of new technologies, ICEs are
expected to remain relevant in the coming decades [1–3]. One of the main problems of
ICEs is the low use of fuel energy. In general, only 21% of the fuel energy is used for
the useful mechanical power of the engine [4]. The remaining percentage is loss by heat
transfer processes, auxiliary engine systems, and mechanical losses. Due to this situation,
researchers have dedicated themselves to finding alternatives to improve fuel efficiency
and minimize the environmental impact of ICEs.

The piston rings are intended to provide a tight seal between the cylinder liner and the
piston. Additionally, the rings contribute to the distribution and control of the lubricating
oil. Despite their benefits, piston rings in ICEs are one of the main sources of energy losses
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due to the friction processes that occur in these elements. Therefore, the study of tribological
performance is of utmost importance to improve fuel economy. Losses associated with
friction processes have a significant impact on fuel consumption and harmful emissions
for the environment, as is the case of CO2 [5,6]. The friction losses present in the piston
assembly can represent approximately 50% of the total friction losses in ICEs [7]. Much of
this percentage of losses is located in the piston ring package [8]. Therefore, it is necessary
to achieve a better compression of the complex processes related to the interaction between
the piston rings and the cylinder liner, which influence friction, wear, sealing capacity,
consumption of lubricating oil, among other factors. This is of utmost importance to achieve
an increase in performance and a reduction in fuel consumption [9]. Another problem
present in piston rings is leakage loss in the combustion chamber. Studies estimate that the
leakage losses are equivalent to a loss of 0.5% of the total energy input of the fuel [10]. On
the other hand, Turnbull et al. [11] noted that leakage losses are six times higher compared
to energy losses associated with friction processes. Despite the importance of this type of
energy loss, there are few quantitative analyzes available in the literature that evaluate the
impact of leaks on engine performance. Bolander et al. [12] experimentally and theoretically
investigated the lubrication conditions and losses associated with friction between the
piston ring and the cylinder liner. Avan et al. [13] studied through the development of
experimental tests the thickness of the lubrication film. Zavos et al. [14] investigated by
means of numerical simulation and experimental tests the deformations of the ring in a
single-cylinder engine as a consequence of the friction between the compression ring and
the cylinder liner.

Starting in the 20th century, numerical models and mathematical models have become
a powerful tool used by many researchers to describe the complex processes present in the
ICE piston assembly. Koszalka [15] investigated by means of numerical simulations the im-
pact of ring and piston geometry on the performance of diesel engines. Oliva and Held [16]
performed a numerical investigation for the analysis of the lubrication oil distribution and
leakage in the piston ring package. Skoblo et al. [17] studied the mechanism of piston
ring wear in a diesel generator by simulating real operating conditions. Niralgikar and
Bulsara [18] analyzed compression ring wear in an internal combustion engine by studying
the profile of the piston ring. Delprete et al. [19] evaluated the tribological phenomena of
the piston skirt under poor lubrication conditions. From the developed numerical method,
the secondary movement and the hydrodynamic pressure in the piston were studied.
Delprete et al. [20] analyzed the sealing capacity of the combustion chamber and its effect
on emissions. The results show that the ring pack and piston skirt are responsible for the
majority of mechanical losses in internal combustion engines. Delprete et al. [21] developed
a model to estimate the minimum thickness of the lubricating oil film and the power loss
of the piston rings under hydrodynamic lubrication conditions. The model considers
the geometry of the profile and the mechanical properties of the ring. Baker et al. [22]
demonstrated the dynamics of the rings play a relevant role in lubrication oil consumption,
friction processes, unburned hydrocarbon products, and oil degradation. This has an
impact on the amount of gas leaks in the combustion chamber [23,24].

Despite the research available in the literature focused on the engine piston, most of it
concentrates on the analysis of the compression ring without considering the behavior of
the other rings. Due to the above, in the present investigation, a study of the piston ring
package is carried out through the use of CFD numerical simulation and mathematical
models. The research carried out involves the kinematic analysis of the three piston rings,
the pressure conditions in the lands, and the ring grooves. As well as the evaluation of
the energy lost as a consequence of friction and leaking gases. The above, with the aim
of implementing a methodology that allows to comprehensively evaluate the influence
that the three piston rings have on operating conditions and energy losses in internal
combustion engines.
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2. Test Bench Engine

The analysis of the set of piston rings in the present investigation is based on the
physical and operational characteristics of a direct injection four-stroke diesel engine with
a maximum power of 95 kW with reference Isuzu 4JJ1. Table 1 indicates the main technical
specifications of the test engine.

Table 1. Technical characteristics of the test engine.

Model Reference 4JJ1

Manufacturer ISUZU
Engine type 4 cylinders

Bore 95.4 mm
Stroke 104.9 mm

Compression ratio 17.5:1
Injection system Direct injection

Displaced volume 2999 cc
Cycle 4 Strokes

The geometric characteristics of the piston rings are shown in Figure 1. The first ring
corresponds to the trapezoidal-shaped compression ring. The second and third piston
rings are responsible for the control and distribution of the lubricating oil, whose shape
corresponds to a Napier ring and a beveled edge ring.
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Figure 1. Geometric profile of the (a) first ring, (b) second ring, and (c) third piston ring.

The profile of the first ring corresponds to a conical geometry, which allows improving
the hydrodynamic lubrication conditions, as a consequence of the lubrication oil that
tends to lodge in the upper and lower face of the ring. Additionally, the contact surface
is considerably reduced, which improves the sealing characteristics. The profile of the
second ring has a right-angle trapezoidal geometric shape, with a chamfer shape on its
lower surface. This avoids the accumulation of oil between the ring and the cylinder liner,
achieving a better distribution of the lubrication oil. Additionally, the chamfer shape allows
a reduction in the weight of the ring. In the case of the third ring, this is characterized by
the presence of two beveled edges that protrude from the profile of the ring in order to
increase the contact pressure between the ring and the sleeve. In this way, greater control
of the lubrication and tightness of the combustion chamber is guaranteed.

The lubricating oil taken as reference is SAE 10W40 lubricant. The physicochemical
properties of the lubricant are shown in Table 2.

Table 2. Technical characteristics of the test engine.

Properties Unit SAE 10W40

Kinematic viscosity (40 ◦C) m2/s 91.057× 10−6

Density (40 ◦C) kg/m3 866
Flash point ◦C 230

Dynamic viscosity (40 ◦C) m2/s 105.10× 10−6

Pressure—viscosity coefficient m2/N 1× 10−8
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3. Auxiliary Mathematical Models

To improve the details of the numerical analysis, the use of auxiliary mathematical
models is proposed, which are subsequently integrated into the CFD model. The models
implemented in the research are detailed below.

3.1. Piston Kinematics

To describe the kinematic behavior of the piston mechanism (connecting rod, crankshaft,
and piston), the system is considered as a sliding crank mechanism [25]. The piston mecha-
nism is described in Figure 2.
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To determine the velocity and acceleration of the piston, the equation matrices de-
scribed below were solved using complex algebra.[

−lc·ωc· sin θ
−lc·ωc· cos θ

]
=

[
lr· sin β 1
lr· cos β 0

][
ωrel
vp

]
(1)

[
lr· sin β 1
lr· cos β 0

][
αrel
ap

]
=

[
−lc·ω2

c · cos θ − lr·ω2
rel · cos β

lc·ω2
c · sin θ + lr·ω2

rel · sin β

]
(2)

where lc is the length of the crankshaft, lr is the length of the connecting rod, vp is the
piston velocity, ap is the piston acceleration and ωc is the angular velocity of the crankshaft.
ωrel and αrel are the relative angular velocity and acceleration of the movement between
connecting rod and piston. β is the angle between the connecting rod and the piston
displacement axis, which is determined by Equation (3).

β = sin−1
(
− lc· sin θ + d

lr

)
(3)

where d is the horizontal distance between piston axis (see Figure 2).

3.2. Lubrication Oil Properties

The properties of the SAE 10W40 lubricating oil are introduced into the CFD model
by means of functions that depend on the temperature and pressure conditions. To de-
termine the density of the lubricating oil (ρ), the relationship proposed by Dowson and
Higginson [26] was used, as shown in Equation (4).

ρ = ρo(1− cth[T − To])·
(

1 +
6× 10−10·[p− po]

1 + 1.7× 10−9·[p− po]

)
(4)
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where ρo and po are the density and pressure of the lubricating oil at ambient conditions. cth
is the coefficient of thermal expansion. In the case of the dynamic viscosity of the lubricating
oil (µ), the model proposed by Houpert [27] was used, as shown in Equation (5). In the
literature, there are different numerical models for the analysis of lubrication properties.
However, some have limitations in their range of application, as is the case with the model
proposed by Barus, which is inaccurate under high-pressure conditions [28]. The expression
proposed by Houpert is one of the models with greater precision. Due to the above, it is
one of the main models used in numerical simulation studies [28].

µ = µo·e
(1+ p−po

cp )
Z

ln (
µo
µ∞ )( T−138

To−138 )
−So− ln (

µo
µ∞ )

(5)

where µo is the dynamic viscosity of the lubricating oil at ambient conditions, Z is the
lubricant piezo-viscosity index, So is the thermo-viscosity index. cp and µ∞ are model
constants, defined as 1.98 × 108 Pa·s and 6.31 × 10−5 Pa·s, respectively. Z and So are
calculated using Equations (6) and (7).

Z =
αo·cp

ln
(

µo
µ∞

) (6)

So =
βo·(To − 138)

ln
(

µo
µ∞

) (7)

where αo is the atmospheric piezo-viscosity coefficient and βo is the thermo-viscosity
coefficient, respectively.

3.3. Contact Friction Model

A contact friction force occurs on the surface of the piston rings, which is the conse-
quence of two factors. The first is due to the interaction with the surface asperities that
protrude from the lubrication film. The second factor is the result of shear caused by the
viscosity of the lubricating oil. Therefore, the contact friction force ( fc) is determined by
Equation (8).

fc = fv + fa (8)

where fv is the viscous friction force and fa is the asperity friction force. The calculation of
fv is carried out using Equation (9).

fv = τ·(A− Ae) (9)

where τ is the viscous shear stress of the lubricating oil, A is the apparent contact area
and Ae real contact area between ring and liner, respectively. τ is calculated by means of
Equation (10) [29].

τ =

∣∣∣∣→∇p
h
2
+
→
vp

µ

h

∣∣∣∣ (10)

where h is the lubricant film thickness. The calculation of fa is determined by means of
Equation (11).

fa = ζ·Wl + τo·Ae (11)

where ζ is the coefficient of asperity shear strength (ζ = 0.17) [30], τo is the limiting Eyring
shear stress of the lubricating oil and Wl is the asperity contact load, respectively. The real
contact area between ring and liner (Ae) is defined by Equation (12).

Ae = A·F2(λ)·π2·ξ2·κ2·σ2 (12)
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where κ is the average radius of curvature of asperities, ξ is the density of asperity peaks
per unit area, and σ is the surface roughness. F2(λ) is an approximate statistical function
using a fifth-order polynomial, as indicated in Equation (13) [31].

F2(λ) =

{
−0.0018λ5 + 0.0281λ4 − 0.1728λ3 + 0.5258λ2 − 0.8043λ + 0.5003, λ ≤ 2.295

0, λ > 2.295

}
(13)

where λ is the Stribeck’s lubricant film ratio. The asperity contact load (Wl ) is determined by
Equation (14).

Wl =
16
√

2
15
·A·π·F5/2(λ)·E·ξ2·κ

3
2 ·σ

5
2 (14)

where F5/2(λ) is a statistical function of lubricant film ratio using a fifth-order polynomial, as indicated
in Equation (15).

F5/2(λ) =

{
−0.0046λ5 + 0.0574λ4 − 0.2958λ3 + 0.7844λ2 − 1.0776λ + 0.6167, λ ≤ 2.224

0, λ > 2.224

}
(15)

3.4. Blow-By Model
The mass flow between the piston surface and the groove of each piston ring is determined by

considering the calculation as an isentropic flow through an orifice, as shown in Equation (16) [32].

.
mb =

fm·cd·Ar·Pu

R
1
2 ·Tu

1
2

(16)

where cd is the coefficient of discharge, Tu is the upstream orifice temperature, Ar is the ring end-gap
area and R is the gas constant, respectively. fm is the compressibility factor, which is determined by
Equation (17) [32].

fm =


√

rs·
(

2
rs+1

) rs+1
2(rs−1) , Pd

Pu
>
(

2
rs+1

) rs
(rs−1)

0.85− 0.25
(

Pd
Pu

)2
, Pd

Pu
≤
(

2
rs+1

) rs
(rs−1)

 (17)

where Pu is the upstream pressure, Pd is the downstream pressure and rs is the ratio of specific heats.
The power loss associated with the gas blow-by is calculated from Equation (18) [33].

Pb =

.
mb·rs·R·Tu

rs − 1
·
(

1−
(

Pd
Pu

) rs−1
rs

)
(18)

The blow-by model requires as an input parameter the pressure conditions at the top (Pu) and
bottom (Pd) of each ring. The above corresponds to the pressure levels in the first, second, and
third piston land. As well as, the pressure conditions in the engine crankcase. Table 3 describes the
pressure values throughout the combustion cycle for a torque condition of 408 Nm and a rotation
speed of 2000 rpm.

3.5. Tribological Model
To determine the lubrication film, the one-dimensional Reynolds equation was used, as indi-

cated in Equation (19), [34].
∂

∂x

(
h3 ∂p

∂x

)
= 6µvp

∂h
∂x

+ 12µ
∂h
∂t

(19)

where h is the thickness of the lubrication film and p is the pressure between the ring surface and the
cylinder liner. To determine the pressure (p) Equation (20) was used.

p = 6µvp

∫ 1
h2 dx + 12µ

dh
dt

∫ x
h3 dx + c1

∫ 1
h3 dx + c2 (20)

where c1 and c2 are constants of integration. These constants are determined by the limit conditions
of hydrodynamic pressure in the profile of the piston ring, which depend on the cavitation produced
in the lubrication film [35].
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Table 3. Pressure conditions for blow-by model.

Crankshaft
Angle (◦)

Pressure (bar)

First Land Second Land Third Land Crankcase

0 2.43 1.40 1.53 0.08
45 1.94 1.25 1.23 0.11
90 1.57 1.28 1.14 0.09

135 1.68 1.40 1.15 0.10
180 1.55 1.44 1.18 0.07
225 2.03 1.40 1.24 0.08
270 2.88 1.77 1.35 0.09
315 7.74 2.46 1.31 0.13
360 44.02 6.72 1.73 0.15
405 22.82 8.43 3.51 0.16
450 4.43 5.05 2.19 0.11
495 3.08 3.20 1.86 0.14
540 1.49 1.90 1.46 0.07
585 1.85 1.38 1.44 0.08
630 1.84 1.23 1.35 0.10
675 2.08 1.36 1.30 0.07
720 1.95 1.50 1.33 0.09

4. CFD Procedure
For the CFD modeling, the geometric CAD of a piston was built, which is based on a diesel

engine, whose characteristics are indicated in Table 1. The details of the piston geometry are shown
in Figure 3.
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Figure 3. Test engine piston geometry.

The computational domain is limited by the surface of the piston and the outer walls of the rings.
Additionally, the volume of the combustion chamber and the connecting rod-crankshaft mechanism
are considered to describe the movement of the piston throughout the combustion cycle. Velocity
and acceleration are defined by the algebraic matrix indicated in Equations (1) and (2). The CFD
simulation is carried out by means of the free software OpenFOAM. The mesh development was
carried out using the SALOME software, in which a hexahedral mesh was generated. The behavior
of the fluid and the pressure inside the combustion chamber is governed by the Navier–Stokes
equations. The temperature conditions inside the cylinder chamber are based on the temperature
curves throughout the combustion cycle obtained through experimental tests. The convergence
of the simulations is established when the residuals reach values of 10−4 for the kinetic energy of
turbulence, 10−4 for the dissipation rate and 10−7 for the energy [36].

The boundary conditions were established based on the operating characteristics of the engine
with a torque of 408 Nm and a rotational speed of 2000 rpm. The properties of the lubricating oil
were considered as a function of pressure and temperature, as indicated in Equations (4) and (5).
The initial lubrication oil distribution was established at a thickness of 5 µm. The foregoing refers to
the initial coating of the lubricating oil film on the cylinder liner. In the case of the areas between
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the cylinder liner and the profile of the rings, a distribution of 10% lubricating oil and 90% air was
established. The methodology for the development of the CFD model is shown in Figure 4.
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Figure 4. Research methodology using CFD.

From the experimental tests in a test bench, the boundary conditions are defined,
which correspond to the pressure levels in the combustion chamber, temperature, and
mass flow throughout the combustion cycle. Additionally, the geometric data of the piston,
rings, and cylinder liner are taken as a reference. The configuration of the CFD model is
complemented with the auxiliary mathematical models described in Section 3. From the
simulation results, the analysis of the movement of the piston rings, pressure conditions,
analysis of leakage flow, and loss of power. Discussions of these analyzes are noted in
Section 5.

To verify the reliability of the simulation results, an experimental validation was
carried out, taking as a reference the pressure conditions in the piston second and third
lands (see Figure 10). For this, pressure transducers were installed in the piston body. The
results of the comparison between the simulations and the experimental data are shown in
Figure 5.
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From the results obtained in Figure 5, it was possible to show that the curves obtained
through the numerical simulation describe a highly similar trend compared to the experi-
mental data. In the case of the second land, an average error of 9% was obtained throughout
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the combustion cycle. For the third land, the average error obtained was 8%, respectively.
However, areas of greater deflection occur during the compression and expansion stages.
This can be the consequence of factors such as sudden variations in combustion chamber
pressure and changes in lubrication properties. Despite the above, the maximum error in
the pressure of both lands remained less than 15%, which allows demonstrating that the
estimates of the numerical simulation are congruent with the real behavior of the engine.

5. Results and Discussion
5.1. Analysis of Movement of Piston Rings

Figure 6 describes the radial movement experienced by the piston rings throughout
the combustion cycle.
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From the results obtained in Figure 6, it was observed that the compression ring
(first ring) is the one that experiences a greater degree of radial movement compared
to the second and third rings, respectively. For the simulated condition, a maximum
displacement of 3.4, 1.7, and 1.3 µm were obtained in the first, second, and third rings. The
greater displacement of the first ring can be a consequence of the high pressure, which acts
on the rear part and the front face of the ring. Additionally, the high-pressure conditions
inside the combustion chamber cause an increase in the friction force caused by the viscosity
of the lubricating oil since the viscous shear stress is directly associated with the pressure
gradient, as indicated in Equation (10). The above tends to favor the imbalance of the rings.

The pressure levels in the ring grooves decrease as the gas flow decreases, which
explains the damping of radial movement. Additionally, it was evidenced that the greatest
radial movement occurs approximately during an angle of 90◦, 315◦, 450◦, and 630◦, which
corresponds to a condition of ascent and descent of the piston. This implies that the contact
force due to the friction produced between the cylinder liner and the face of the piston
rings has a significant influence on the radial movement of the piston rings.

Figure 7 shows the axial movement of the piston rings, in which position 0 indicates
that the ring is located at the bottom of the piston groove.

The highest axial movement was obtained for a crankshaft angle between 0–180◦,
corresponding to the intake stage. During this stage, the piston is in a downward stroke,
therefore the main force acting on the rings is the inertial force. Additionally, during intake,
the frictional force of the lubricating oil greatly exceeds the force caused by pressure in
the ring grooves, which tends to keep the rings seated on top of the grooves. However,
during the compression stage (between 180–360◦) and expansion (between 360–540◦), the
movement is reversed as a result of the high pressures on the upper surface of the rings.
The second lift of the piston rings was obtained during the final expansion stage. This
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behavior is the result of an increase in pressure on the lower face, which tends to raise the
rings. The maximum axial displacement for the simulated conditions was 97.1, 53.2, and
21.1 µm for the first, second, and third piston rings, respectively.
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The angle of inclination for the three piston rings is depicted in Figure 8. The positive
angle indicates that the ring tends to set towards the outside diameter (see Figure 9a) and
towards the inside diameter for a negative angle of inclination (see Figure 9b).
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In the case of the first ring, it was observed that it tends to maintain a negative angle
of inclination throughout the combustion cycle. Due to this position, part of the gases can
advance through the upper groove of the first ring, which produces a lifting thrust from
the lower surface of the ring. This implies a lower sealing capacity of the chamber since the
ring is not capable of sealing the path of the gas flow. The above condition significantly
affects the second piston ring since it also has the same negative inclination as the first ring,
which is a consequence of the pressure exerted by the leakage of gases on the upper face of
the ring.

5.2. Pressure Conditions Analysis

Figure 10 shows the locations of the lands and grooves in the piston body. From
these locations, the pressure conditions are analyzed. The results obtained are described in
Figure 11.
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According to the results of Figure 11, it was observed that during the compression and
expansion stage, the highest-pressure ranges are presented, reaching a maximum value of
9.0 and 3.6 bar for lands 2 and 3, and a maximum value of 8.7 and 1.5 bar for grooves 2 and
3, respectively. The higher-pressure conditions in the compression and expansion stage
are attributed to the increase in the concentration of gas flow due to the negative angle of
inclination experienced by the first and second piston rings. The reduced pressure level in
groove 3 is a consequence of its proximity to the engine crankcase, which is not directly
affected by combustion phenomena. This allows us to explain the constant pressure levels
at this location throughout the combustion cycle.

5.3. Leakage Flow Analysis

Figure 12 shows the flow conditions through the end gap of each ring as a function of
the crankshaft angle.

From the results described in Figure 12, it is evident that the first ring has a significant
impact on the amount of flow that the piston manages to pass through. This is because
the gaps in the first ring interact directly with the combustion chamber. Therefore, the
reduction in the gaps of the first ring is a key factor in limiting the leakage of gases. The
highest levels of leakage for the simulated conditions were 0.90, 0.20, and 0.05 g/s in the
first, second, and third rings, which occurred between the transition from the compression
stage to the expansion stage. Additionally, a high flow condition was observed during the
admission stage in the third ring, which registered a maximum of 0.046 g/s. This may be
a consequence of the increase in pressure on earth three, as indicated in Figure 11. This
implies that the pressure force on the ring manages to overcome the inertia of the ring,
preventing it from settling on its upper surface and, hence, allowing the flow to pass.
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5.4. Analysis of Power Loss in the Piston Rings

The power loss to friction between the cylinder liner and the surface of each of the
rings is shown in Figure 13. This analysis is carried out under a condition of the rotation
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speed of 2000 rpm. For the power loss analysis, the energy dissipated in the three piston
rings is taken into consideration.
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Figure 13. Power loss in piston rings.

The results obtained indicate that the highest friction losses occur in the third ring,
followed by the second and first rings, respectively. This behavior can be a consequence of
the beveled edge, which prevents the ring from buoyancy in the piston groove. However,
this favors the presence of a mixed friction condition. Additionally, the tension of this ring
is the strongest for its work to control the oil distribution. In general, the losses in the first
and second rings are 23.6% and 11.7% lower compared to the third ring.

Figure 14 indicates the thickness of the lubrication film for different conditions of
motor rotation speed. The results obtained show that the minimum lubrication thicknesses
are present at the bottom dead center. Therefore, this piston location is the most prone to
severe wear on the cylinder liner. In general, the highest lubrication film thickness values
are observed at the highest rotational speed conditions. However, this behavior is reversed
during the expansion stage (360–540◦). This can be attributed to the mixed lubrication
condition aggravated by the increase in piston speed.
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Figure 14. Minimum lubrication film thickness for different rotation speeds (compression ring).

In Figure 15 the influence of the speed of rotation of the motor on the friction force
of the piston is described. The results show that the greatest friction force occurs approxi-
mately during the beginning of the expansion stage, which may be a consequence of the
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critical thinning of the lubrication film, as indicated in Figure 14. The maximum friction
force for the speeds of 1000, 1250, 1500, 1750, and 2000 rpm were 19, 25, 34, 40, and 47 N,
respectively. The above results show that the greatest friction force occurs at the highest
rotational speed. This behavior can be attributed to the greater thickness of the lubrication
film, as indicated in Figure 14. Additionally, the increase in the speed of rotation implies
an increase in the speed of the piston. Both factors favor the increase in the friction force,
as indicated in Equations (8)–(10).
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Figure 16 shows the percentages of energy loss as a consequence of the friction of the
rings on the cylinder liner and gas leaks for different conditions of rotational speeds at a
constant load of 408 Nm.
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The results obtained show that the losses due to gas leakage are higher compared to
the friction losses. As the rotation speed increased, there was an increase in both types of
losses. For the simulated conditions, it was evidenced that leakage losses range between
3.22–7.90%, respectively. In the case of friction losses, a loss percentage between 2.67–8.29%
was observed.
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6. Conclusions

In this research, an analysis of the kinematic and dynamic characteristics of the piston
ring package of a diesel engine is carried out through the integrated development of CFD
simulation with mathematical models, in which the effects of temperature on the properties
of the oil are considered. The kinematic movement of the piston, the friction force, and
the leakage of gases in the combustion chamber. Next, the conclusions obtained from the
kinematic analyzes, pressure conditions, and energy losses are indicated.

The kinematic analysis of the three piston rings allowed the evaluation of the radial
and axial movement and the angle of inclination that the rings present throughout the
combustion cycle. In which, it was evidenced that the first ring has a considerably greater
radial and axial movement compared to the other piston rings. This greater instability of
the ring in the piston groove tends to favor the amount of leakage gases. Additionally, it
was shown that the first and second rings tend to maintain a negative tilt angle throughout
the combustion cycle, which facilitates the advancement of the combustion gases over the
piston grooves. Due to the above, it is necessary to use strategies such as the application of
static torsions in the rings so that they tend to maintain a positive inclination.

The analysis of pressure conditions allowed to show that the maximum pressure of the
earth and groove of the second ring is 150% and 480% higher compared to the conditions
present in the third ring. Due to these high pressures, it is necessary to focus efforts on the
design of the profile of this ring, given its importance to control the exhaust gases towards
the engine crankcase, especially during the compression and expansion stages.

The analysis of energy losses showed that the combination of leakage gases and
friction are responsible for a mechanical loss between 6–16%. These losses are significantly
high under conditions of high engine rotation speed. Both types of losses presented similar
percentages for the range of speeds analyzed. Therefore, leak mitigation plays an important
role in improving the performance and emissions of internal combustion engines.

In general, the development of the proposed methodology is a novel tool for the joint
analysis of the kinematic characteristics, pressure conditions, and energy losses. In this
way, integrated analysis of changes caused by piston ring designs is possible.

The development of future research will be focused on the integration of additional
mathematical models that allow taking into account other parameters, such as deformation
and torsion experienced by the rings during the combustion cycle.
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Abbreviations
The following abbreviations are used in this manuscript:

Nomenclature
lc Length of the crankshaft
lr Length of the connecting rod
vp Piston velocity
ap Piston acceleration
cth Coefficient of thermal expansion
Z Lubricant piezo-viscosity index
So Thermo-viscosity index
αo Atmospheric piezo-viscosity coefficient
βo Thermo-viscosity coefficient
fc Contact friction force
fv Viscous friction force
fa Asperity friction force
τ Viscous shear stress of the lubricating oil
A Apparent contact area
Ae Real contact area between ring and liner
h Lubricant film thickness
Wl Asperity contact load
F2(λ) Statistical function
cd Coefficient of discharge
Tu Orifice upstream temperature
Ar Ring end-gap area
R Gas constant
fm Compressibility factor
Pu Upstream pressure
Pd Downstream pressure
rs Ratio of specific heats
h Thickness of the lubrication film
p Pressure between the ring surface and the cylinder liner
Greek Letters
τo Limiting Eyring shear stress
κ Average radius of curvature of asperities
ξ Density of asperity peaks per unit area
σ Surface roughness
λ Stribeck lubricant film ratio
µ Dynamic viscosity of the lubricating oil
β Angle between the connecting rod and the piston displacement axis
ωc Angular velocity of the crankshaft
ωrel Relative angular velocity of the movement between connecting rod and piston
αrel Relative acceleration of the movement between connecting rod and piston
ρ Density of the lubricating oil
ζ Coefficient of asperity shear strength
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