Mostrar el registro sencillo del ítem

dc.contributor.authorAperador, w
dc.contributor.authorBautista-Ruiz, J
dc.contributor.authorCaicedo, J.
dc.date.accessioned2022-12-04T21:34:20Z
dc.date.available2022-12-04T21:34:20Z
dc.date.issued2022-01-01
dc.identifier.issn0974-1496spa
dc.identifier.urihttps://repositorio.ufps.edu.co/handle/ufps/6631
dc.description.abstractTo ascertain the influence of titanium percentage in 316L austenitic steel, titanium percentages varied from 0.5 to 2% aggregated to 316L steel. The powder metallurgy method was used. The powdered material was pressed at 800 MPa and then sintered at 1300°C. The X-ray diffraction (XRD) technique was used to characterize the identification of the phases after the processed mixtures. Wear and tribowear properties were determined by pin on disc tests. Electrochemical polarization curves were used to study corrosion. According to the results of the samples, the corrosion resistance of titanium increased to a percentage of 1.5% due to the formation of the phases generated by the mixture. However, it was determined that the most appropriate percentage is 2%, due to the synergistic mode specifically for wear and corrosion resistance, the mechanism is the most adequate.eng
dc.format.extent7 paginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rightsCC BY 4.0 licenseeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttp://rasayanjournal.co.in/admin/php/upload/3402_pdf.pdfspa
dc.titleSYNERGISTIC CORROSION-WEAR EFFECT IN AUSTENITIC POWDER METALLURGICAL STEEL WITH DIFFERENT TITANIUM ADDITIONSeng
dc.typeArtículo de revistaspa
dcterms.references1. H. Kulkarni and V.V. Dabhade, Journal of Manufacturing Processes, 44, 1(2019), https://doi.org/10.1016/j.jmapro.2019.05.009spa
dcterms.references2. A. Billard, F. Maury, P. Aubry, F. Balbaud-Célérier, B. Bernard, F. Lomello, H. Maskrot, E. Meillot, A. Michau and F. Schuster, Comptes Rendus Physique, 19(8), 755(2018), https://doi.org/10.1016/j.crhy.2018.10.005spa
dcterms.references3. J. Caicedo, N. Bonilla, W. Aperador, Metals, 11(12), 11122049 (2021), https://doi.org/10.3390/met11122049spa
dcterms.references4. A. Kumar-Rai, S. Raju, B. Jeya Ganesh, G. Panneerselvam, M. Vijayalakshmi, T. Jayakumar and B. Raj, Nuclear Engineering and Design, 241(8), 2787(2011), https://doi.org/10.1016/j.nucengdes.2011.05.039spa
dcterms.references5. U. Pandey, R. Purohit, P. Agarwal and S. Kumar Singh, Materials Today: Proceedings, 5(2), 4106(2018), https://doi.org/10.1016/j.matpr.2017.11.671spa
dcterms.references6. N. Zhang, X. Han, D. Sun, S. Liu, H. Liu, W. Yang and G. Wu, Powder Technology, 369, 334(2020), https://doi.org/10.1016/j.powtec.2020.05.030spa
dcterms.references7. N. Karthikeyan, B. Radha Krishnan, A. VembathuRajesh and V. Vijayan, Materials Today: Proceedings, 37(2), 2770(2021), https://doi.org/10.1016/j.matpr.2020.08.643spa
dcterms.references8. N. Akçaml and B. Şenyurt, Ceramics International, 47(5), 6813(2021), https://doi.org/10.1016/j.ceramint.2020.11.024spa
dcterms.references10. Q. Zhao, Y. Chen, Y. Xu, R. Torrens, L. Bolzoni and F. Yang, Materials & Design, 200, 109457(2021), https://doi.org/10.1016/j.apt.2021.05.009spa
dcterms.references12. Y. Zhang, S. Fang, Y. Wang and D. Zhang, Materials Science and Engineering: A, 803, 140701(2021), https://doi.org/10.1016/j.msea.2020.140701spa
dcterms.references13. Y. Liu, Z. Liu and M. Wang, Journal of Materials Processing Technology, 294, 117142(2021), https://doi.org/10.1016/j.jmatprotec.2021.117142spa
dcterms.references14. J. Bautista-Ruiz, J.C. Caicedo and A. Chaparro, Rasayan Journal of Chemistry, 12(4), 1950(2019), https://doi.org/10.31788/RJC.2019.1245390spa
dcterms.references15. B. Shahabi Kargar, M.H. Moayed, A. Babakhani, A. Davoodi, Corrosion Science, 53(1), 135(2011), https://doi.org/10.1016/j.corsci.2010.09.004spa
dcterms.references16. P. Murkute, S. Pasebani and O. Burkan-Isgor, Journal of Materials Processing Technology, 273, 116243(2019), https://doi.org/10.1016/j.jmatprotec.2019.05.024spa
dcterms.references17. J.E. Sanchéz, L. Ipaz, W. Aperador, J.C. Caicedo, C. Amaya, M.A.H Landaverde, F.E Beltran, J. Muñoz-Saldaña and G. Zambrano, Applied Surface Science, 256(8), 2380(2010), https://doi.org/10.1016/j.apsusc.2009.10.071spa
dcterms.references19. J. Bautista-Ruiz, G. Moreno and A. Chaparro, Rasayan Journal of Chemistry, 13(3), 1711(2020), https://doi:10.31788/RJC.2020.1335521spa
dcterms.references20. L. Romero-Resendiz, P. Gómez-Sáez, A. Vicente-Escuder and V. Amigó-Borrás, Journal of Materials Research and Technology, 11, 1719(2021), https://doi.org/10.1016/j.jmrt.2021.02.014spa
dcterms.references21. X. Song, F. Liu, C. Qiu, E. Coy, H. Liu, W. Aperador, K. Załęski, J. Li, W. Song, Z. Lu, H. Pan, L. Kong and G. Wang, Materials Horizons, 2021(8), 912(2021), https://doi.org/10.1039/D0MH01837Fspa
dcterms.references22. M. Fellah, N. Hezil, M. Zine Touhami, M. AbdulSamad, A. Obrosov, D. O. Bokov, E. Marchenko, A. Montagne and A. Alhussein, Journal of Materials Research and Technology, 9(6), 14061(2020), https://doi.org/10.1016/j.jmrt.2020.09.118spa
dcterms.references23. J. Chávez, O. Jimenez, L. Olmos, I. Farias, M. Flores-Jimenez, R. Suárez-Martínez, J.L. Cabezas-Villa and J. Lemus-Ruiz, Materials Letters, 280, 128590(2020), https://doi.org/10.1016/j.matlet.2020.128590spa
dcterms.references24. M. Belwanshi, P. Jayaswal and A. Aherwar, Materials Today: Proceedings, 44(6), 4131(2021), https://doi.org/10.1016/j.matpr.2020.10.458spa
dcterms.references25. J. Bautista-Ruiz, W. Aperador and M.R. Joya, Rasayan Journal of Chemistry, 13(4), 2092(2020), https://doi:10.31788/RJC.2020.1345854spa
dcterms.references25. J. Bautista-Ruiz, W. Aperador and M.R. Joya, Rasayan Journal of Chemistry, 13(4), 2092(2020), https://doi:10.31788/RJC.2020.1345854spa
dcterms.references11. S. Dong, G. Ma, P. Lei, T. Cheng, D. Savvakin and O. Ivasishin, Advanced Powder Technology, 58, 921(2021), https://doi.org/10.1016/j.apt.2021.05.009spa
dcterms.references18. T. Meesak and C. Thedsuwan, Materials Today: Proceedings, 5(3), 9560(2018), https://doi.org/10.1016/j.matpr.2017.10.138spa
dc.contributor.corporatenameRasayan Journal of Chemistryspa
dc.identifier.doi10.31788/RJC.2022.1516622
dc.identifier.eissn0976-0083spa
dc.relation.citationeditionVol 15 No 1spa
dc.relation.citationendpage64spa
dc.relation.citationissue1spa
dc.relation.citationstartpage57spa
dc.relation.citationvolume15spa
dc.relation.ispartofjournalRasayan Journal of Chemistryspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposal316L Steeleng
dc.subject.proposalTitaniumeng
dc.subject.proposalCorrosioneng
dc.subject.proposalPowder Metallurgyeng
dc.subject.proposalTribologyeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

CC BY 4.0 license
Excepto si se señala otra cosa, la licencia del ítem se describe como CC BY 4.0 license